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CURVATURE MEASURES(})

BY
HERBERT FEDERER

1. Introduction. In the classical theory of convex subsets of Euclidean n
space [BF; H] a major role is played by Minkowski's Quermassintegrale.
These are, up to constant factors, the coefficients of the Steiner polynomial
whose value at any positive number 7 equals the » dimensional measure of the
r neighborhood of the convex set considered. For a set with sufficiently
smooth boundary, they may be computed by integrating the symmetric func-
tions of the principal curvatures over the bounding hypersurface.

In the branch of classical differential geometry known as integral geom-
etry [BE; S; C2] similar concepts have been studied without convexity as-
sumption for certain types of sets, for example regions bounded by very
smooth hypersurfaces. The central result of this study is the principal kine-
matic formula for the integral, over the group of rigid motions of 7 space,
of the Euler-Poincaré characteristic of the intersection of two solid bodies,
one fixed and the other moving.

In [W] the formula of Steiner was extended to compact regular submani-
folds of class 2 of n space, with coefficients expressed as integrals over the
manifold of certain scalars associated with the Riemannian curvature tensor.
This work was followed by the generalization of the Gauss-Bonnet Theorem
[A; FEL1; AW; C1].

All these classical investigations involve related geometric and measure
theoretic curvature properties of various special types of point sets. The
search for a general theory is an obvious challenge. Those subsets of # space
which are to be the objects of such a theory must be singled out by some
simple geometric property. Among these objects must be all convex sets and
all regularly embedded manifolds of class 2 (possibly with regular boundary).
The curvatures attached to these objects should have the global aspects of
Minkowski’s Quermassintegrale, yet be determined by local properties; hence
it seems reasonable that they should be measures. Neither the definition of
the curvature measures nor the statement of any important theorem about
them may contain explicit assumptions of differentiability, because arbitrary
convex sets are to be admissible objects. Whatever differentiability may be
required for an auxiliary analytic or algebraic argument must be implied by

Presented to the Society, January 30, 1958 under the title An integral formula, April 26,
1958 under the title A general integral geometric formula with application to curvatures, and June
21, 1958 under the title On sets with positive reach, applied to curvature theory; received by the
editors September 18, 1958. The theory developed in this paper was also the topic of a series of
lectures at the 1958 Summer Institute.
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the geometric properties. Of course, in order to be worth while, such a theory
must contain natural generalizations of the principal kinematic formula and
of the Gauss-Bonnet Theorem.

This problem presents a timely challenge to a worker in modern real
function theory, which was originally created in large part for the study of
geometric questions. The results of the theory of area have greatly con-
tributed to the understanding of first order tangential properties of point sets,
and one can hope for similar success in dealing with second order differential
geometric concepts such as curvature. In particular the author’s previous
work connecting Hausdorff measure with various integral geometric formulae
[F3, 4, 5, 7] may be considered a first order antecedent of the second order
theory developed in this paper.

The objects treated here are the sets with positive reach; the reach of a sub-
set A of Euclidean % space, E,, is the largest € (possibly «) such that if
¥ & E, and the distance, §4(x), from x to 4 is smaller than ¢, then 4 contains
a unique point, £4(x), nearest to x. Assuming that reach(4)>0, Steiner’s
formula is established in the following form: For each bounded Borel subset
Q of E, and for 0=<r<reach(4), the » dimensional measure of

En N {x:84(x) < 7 and £4(+) € 0}

is given by a polynomial of degree at most # in 7, say

~ n

2 ria(n — )®(4, Q)

i=0
where a(j) is the j dimensional measure of a spherical ball with radius 1 in E;.
Clearly the coefficients ®;(4, Q) are countably additive with respect to Q,
defining the curvature measures

<I’0(‘47 ')’ <I>1(A, '): ) (I)ﬂ(A) ')-

If dim A =k, then ®;(4, -)=0 for :>k, ®,(4, ) is the restriction of the &
dimensional Hausdorff measure to 4, and the measures ®;(4, -) correspond-
ing to ¢ <k depend on second order properties of 4. If a sequence of sets, all
with reach at least €>0, is convergent relative to the Hausdorff metric, then
the associated sequences of curvature measures converge weakly to the curva-
ture measures of the limit set, whose reach is also at least €. In this way any
set A with positive reach may be approximated in curvature by the solids

{2:84(x) < 5}

corresponding to s>0. If A, B and A\UB have positive reach, so does AN B,

and

If ACE, and BCE, have positive reach, so does A XB CE,XE,=Enin,
and

B et et —
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(4 X B, ) = 2. (4, ) ® 2(B, )
i+i=k

where ® is the cartesian product of measures. The Gauss-Bonnet Theorem
generalizes to the proposition that if 4 is a compact set with positive reach,
then the total curvature ®4(4, 4) equals the Euler-Poincaré characteristic of
A. The new version of the principal integralgeometric formula states that if
u is a Haar measure of the group of isometries of E,, 4 and B are subsets of
E, with positive reach, and B is compact, then AMg(B) has positive reach
for u almost all isometries g, and

f &[4 N ¢(B), x- (¥ 0 g |dug

= E Cn,k.lq’k(A7 X)CI)I(B’ ‘l/)
btl=nti
whenever x and ¥ are bounded Baire functions on E,, x with bounded sup-
port; here ¢, ;,; are constants determined by the choice of p.

Analytic methods can be used in the proof of some of these geometric
theorems, because the concept of reach of a set 4 is closely related to differ-
entiability properties of the functions 64 and £4. In fact, reach(4) =€ if and
only if 84 is continuously differentiable on {x: 0<84(x) <e}. Furthermore, if
reach(4) >s>$>0, then grad 84 is Lipschitzian on {x:#=<84(x) <s}, and &4
is Lipschitzian on {x: 84(x) <s}; hence {x: §4(x) =s} is an n—1 dimensional
manifold of class 1, with Lipschitzian normal, whose second fundamental
form exists almost everywhere.

The computations involving curvature tensors are greatly simplified
through use of the algebra A*(E) @ A*(E) and its trace function; here A*(E)
is the covariant exterior algebra of a vectorspace E. A similar algebra has
been used in [FL1, 2].

The paper contains a new integral formula concerning Hausdorff meas-
ure, which is used here in the proof of the principal kinematic formula, but
which also has other applications. Suppose X and ¥ are m and 2 dimensional
Riemannian manifolds of class 1, m =k, and f: X—7Y is a Lipschitzian map.
For yE Y compute the m —k dimensional Hausdorff measure of f~'{y}, and
integrate over Y with respect to & dimensional Hausdorff measure. It is
shown that this integral equals the integral over X, with respect to m dimen-
sional Hausdorff measure, of the Jacobian whose value at x is the norm of the
linear transformation of k-vectors induced by the differential of f at x. This
result is the counterpart of the classical integral formula for area, which deals
with the case when m=<k.

2. Some definitions. The purpose of 2.1 to 2.9 is only to fix notations con-
cerning certain well known concepts; more details may be found in references
such as [S] and [B2] regarding 2.3, [L2] regarding 2.4, [F4] regarding 2.6
and 2.7, [L1] regarding 2.8, and [B1], [W2] or [F9] regarding 2.9. Some new
material occurs in 2.10 to 2.13.
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2.1. DEFINITION. E, is the n dimensional Euclidean space consisting of all
sequences x=(x1, - * -, %,) of real numbers, with the inner product

n

@y =D Xy for x, y € E,.

=1
G, is the orthogonal group of E,. With z&E E, associate the translation
T.: E.—> E,, Tu(x) =2+« for x € E,.
With R&EG, and wEE,_,, associate the m dimensional plane
AR, w) = R(Enf\{x tx;=w; fori=1, .. -,n-—m}).

2.2. DEFINITION. Suppose f maps an open subset of E, into E,,.
If f is differentiable (in the sense of Fréchet) at x, then the differential
Df(x) is the linear transformation of E, into E,, characterized by the equation

lim | f(x + &) — f(=) — [DF@)]®) | /| k] = o.

h—0
In case m =1, grad f(x) €E, is characterized by the property that
[Df(x)](h) = [grad f(x)] @ & for b € E,.

Fori=1, - - -, n, D;f(x) is the partial derivative of f at x in the direction
of the vector whose coordinates are 0 except the ith, which equals 1.

2.3. DErINITION. Use will be made both of Carathéodory outer measures
[S, Chapter 2] and of countably additive functions [S, Chapter 1] on the
class of all Borel sets with compact closure in a locally compact space, which
will be called Radon measures in accordance with [B2, Chapter 3]. A measure
u over a space X may be thought of either as a function on a suitable class
of subsets of X, or as a function on a suitable class of functions on X. It is
convenient to use the alternate notations

fx 1) duw = [ fiu = wh.

With each Radon measure p one associates its variation measure |u|.

With measures u and » over X and Y one associates the cartesian product
measure u Qv over X X Y.

2.4. DEFINITION. L, is the n dimensional Lebesgue measure over E,. ¢, is
the Haar measure of G, such that ¢.(G,)=1.

Under the map which associates with (z, R) EE, X G, the isometry T,0 R
of E,, the image of the measure L,Q®¢, is a Haar measure of the group of
isometries of E,.

Under the map A, the image of the measure ¢, ® L,_,, is a Haar measure
for the space of all m dimensional planes in E,, invariant under the group of
isometries of E,.
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2.5. DEFINITION.

alk) = LB {x: | x| <1}) = 2’°1‘<—;—>’HI‘ <k_3;_1> Tk + 1)1,

wan—n ") ()

(i) Q)7
B(n, k)B(n, 1)
Bn,k+1—n)B2n —k—1,n—1)

(k + 1> (l + 1>
T r
2 2
(k+l—n+1) (n-l—l)
r T
2 2
2.6. DEFINITION. H* is the k dimensional Hausdorff measure. If A is a

subset of a metric space, then H*(A4) equals the limit, as 7—0+, of the infimum
of the sums

B(n,k) =

v(n, k1) =

D 2*a(k) diameter(S)*

SEF
corresponding to all countable coverings F of 4 such that diameter(S) <r
for SEF.

2.7. DEFINITION. A subset of a metric space is called & rectifiable if and
only if it is the image of a bounded subset of E; under a Lipschitzian map.
The union of a countable family of & rectifiable sets is said to be countably k
rectifiable.

2.8. REMARK. Since differentiability is invariant under continuously dif-
ferentiable homeomorphisms, this concept remains meaningful for maps of
manifolds of class 1. An intrinsic tangent vector v of a manifold of class 1
at a point » may be thought of as operating on every function f which maps
some neighborhood of p into some Euclidean space and which is differentiable
at p; then df(v) =v(f).

In generalizing measure theoretic properties from E, to an #-dimensional
Riemannian manifold of class 1, one replaces L, by H*. A Lipschitzian map
of such a manifold into some other Riemann manifold is differentiable H* al-
most everywhere.

If X and Y are m and # dimensional Riemannian manifolds of class 1, then

Hmn(S) = (™ @ H")(S) forSC X X V.

Using matrices, one may think of G, as an #(n —1) /2 dimensional compact



1959] CURVATURE MEASURES 423

submanifold of E,.. Then the left and right translations of G, are induced by
elements of Gz, hence H*»=1/2 induces a Haar measure over G,, and

Hro-DI2(S) = Hr®=DI2(G,)-$,(S)  for S C Ga.

2.9. DEFINITION. For each finite dimensional real vectorspace E and
k=0, - - -, dim E let

A(E) and AXE)

be the associated spaces of k-vectors and k-covectors (contravariant and co-
variant skewsymmetric tensors of rank k). Also let
dim E dim E
A(E) = @® A(E) and A¥(E) = & A*E)
k=0 k=0
be the corresponding exterior algebras, with the Grassman multiplication A.
With each inner product of E one associates the unique inner products of
A«(E) and A*(E) such that the Grassman products of the subsets of any
orthonormal base of E form an orthonormal base of Ax(E), and the Grassman
products of the subsets of the dual base of A'(E) form an orthonormal base
of A*(E). '
2.10. DEFINITION. Suppose X and Y are Riemannian manifolds of class 1,
f: X—Y, and

k = inf {dim X, dim V}.
If pEX, fis differentiable at p, E and F are the tangent spaces of X and ¥

at p and f(p), then the differential of f induces dual linear transformations of
Aw(E) into Ax(F) and of A*(F) into A*(E) with the common norm

Tf(p)-

Using the matrix of the differential of f at p with respect to orthonormal bases
for E and F, one computes Jf(p) as the square root of the sum of the squares
of the determinants of the k by k& minors of this matrix.

2.11. DEFINITION. Suppose E is an # dimensional real vector space. Con-
sider the tensor products

AeE) = NH(E) @ N(E)  fork, 1=0,1,---,mn,

A**(E) = N*(E) @ A\*(E) = é AxY(E)

k,1=0
and make A**(E) into an associative algebra by defining the product
@®b)-(c®d) =(@ANc)Q® (BN for a, b, ¢, d & N*(E).

Observe that while A*(E) is anticommutative, A**(E) is not anticommuta-

L L —
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tive. However this definition has the advantage that the subalgebra

@ Aek(E)
k=0
is commutative.
This construction is natural; a linear transformation f: E—F induces a
homomorphism f*: A**(F)—A**(E).
Now fix an inner product @ of E. The corresponding inner product @ of
A*(E) induces a unique inner product @ of A**(E) such that

b)) @@ (c®d = (c®c)(b ®d for a, b, ¢, d € N*(E).

On the other hand the inner product of A*(E) corresponds to a real valued
linear function on A**(E), the trace, which is characterized by the formula

trace(c @ b)) = c @b for a, b € N*(E).

Since A*(E) is the conjugate space of A,(E), there is a natural isomorphism
of A**(E) onto the space of bilinear forms of Ax(E); if a, bEA*(E), then the
bilinear form B corresponding to (¢ ®b) is given by the equation

B(x, y) = a(@)b(y)  for x, y € Ai(E).

Furthermore the space of bilinear forms of A(E) is isomorphic with the space
of endomorphisms of A4(E); a bilinear form B and the corresponding endo-
morphism T are related by the formula

B(x,y) = T(x) @y  forx, y € Au(E).

In particular, if 8, - - -, 8, form an orthonormal base of A(E) and

I=20:®0:; €A (E),
=1
then the inner product and the identity endomorphism correspond to I.
2.12. REMARK. Assume the conditions of 2.11 and suppose 6y, - - -, 0
form an orthonormal base of AY(E). For =0, - - -, n let S; be the class of
all subsets of {1, <., n} with % elements, and for a €S;, let

0a=0al/\0a2/\"'/\0ak

where a; <ay;< - - - <ay are the elements of a. Then the following statements
hold:

1) {0a®01,: a&ES;, bES,-} is an orthonormal base of Ai-i(E).
(2) If MEA#i(E) and NEA*Y(E), then

vt <[5

(3) If MEATY(E), then | M¥| <k!| M|*.
(4) If MEN+*(E) and j=0, - - -, n—F, then
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trace (MI7) = (n — k)!(n — k — j) 7! trace (M).

(5) If M&EATY(E) and f is the endomorphism of E corresponding to M,
then

and the endomorphism of A(E) induced by f corresponds to
EFIME = 3 f*(8a) ® b

aeSg

Consequently det(f) =trace(n!~'M") and the characteristic polynomial of f is

trace[n!=Y(M — A)*] = zn: trace(k!I71M*) - (—\)"7k,

k=0

6) Ifw, -+, woCA(E) and M= 3 s w;®0s, then

A w; = trace(n!=1M") A 6.

i=1 =1

The verification of (1), (4), (5) is quite easy. Furthermore (3) follows by
induction from (2), and (6) follows from (5) with w,=f*(0;). To prove (2),
ase (1) to expand

M= Z Ma,boa ® oby N = Z Nc,doc ® 0a.

(a,b)E8;XS; (c,d)eSEXS,
For (u, v) &Sk X S;y1 let
Pu,v) = (S: X S; X S X S) N {(a,b,¢,d):a\Jc=ubUd=n0},
and for (a, b, ¢, d) EP(u, v) choose €,.,= +1 and &,s= +1 so that
B0 A\ 0 = €000y and 0y A 02 = €40,

Using (1), Hélder’s inequality and the fact that the set P(«, v) are disjoint,
one obtains

| N2

I

2
Z [ E Ma.ch.dfa.cfb,d]

(u,v)ES; +£XSj+1 (a,b,c,d)EP(u,v)

> <M.,.ch.d>2<“; k)(“."l)

(,9)ES; +xX8Sj+1 (a,b,¢,d)EP (u,v) J

(z-’;— k> (j + l> ) (Ma,5)%(N.,a0)?

1 J (@,b,¢,d) €8;XS; XS XSy

-( )0
i I\

lIA

IIA
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2.13. REMARK. Under the conditions of 2.11 it is true that if a real valued
linear function Q on AN**(E) is invariant under the endomorphisms of N¥*+(E)
wnduced by the orthogonal transformations of E, then Q is a real multiple of the
trace.

In fact, using the notations of 2.12, one sees that if @, & Ss, then

Q8. ® 0,) = 0in case a ¥~ b,

because if ¢€a—b and f is the orthogonal transformation of E such that
f*(0;) = —0; and f*(6,) =0, for j1, then

Qs ® 05) = Q[f*(6a ® 05)] = Q(—6. ® ) = — Q8 ® 65);

furthermore

Q6. ® o) = Q(6s ® 0)

because if a1 <a;< - - - <arand b <b2< - - - <by are the elements of @ and
b, then there is an orthogonal transformation f of E such that

f*(0z;) = 6p; fori=1,--- k hence f*,) = 6.

Consequently Q=Q(0,®8,) -trace, where a €.S;.

3. An integral formula concerning Hausdorff measure(?). Complement-
ing the classical integral formula for the area of a map f: X—Y such that
dim X =dim Y, the theorem proved in this section concerns the case when
dim X =dim Y. The original motivation leading to the discovery of this theo-
rem was the simplification of certain arguments in [DG]; in fact, if X=4
=E, and Y =E,, then the formula becomes

f | grad /(%) | dLnx = f wH'"-‘(f“{dey-
En —00

The theorem will be used in the present paper to prove the kinematic for-
mula, and may be expected to have further applications.

3.1. THEOREM. If X and Y are separable Riemannian manifolds of class 1
with
dmX =m =k =dim ¥V

and f: X—Y is a Lipschitzian map, then

[ wames = [ merca o phay

(%) The author’s abstract containing this formula was received by the American Mathe-
matical Society on November 22, 1957, and published in the Notices of the American Mathe-
matical Society as Abstract 542-43 in vol. 5 (1958) p. 167. At the 1958 Summer Institute L. C.
Young announced his independent discovery of a very similar theorem and distributed copies
of his Technical Summary Report No. 28, U. S. Army Mathematics Research Center, Univer-
sity of Wisconsin, May, 1958, which contains an outline of his argument.
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whenever A is an H™ measurable subset of X, and consequently

fxg(x)]f(x)dH"‘x = fyfj—l( )g(x)dH’"—"de"y

whenever g is an H™ integrable function on X.

Proof. Suppose M is a Lipschitz constant for f and let u be the measure
over X such that

mm=j;m%Amﬁbmmy

for A CX, where f *? means upper integral. For ¢ €X, let
K(a,7) = X N {«: distance (x, a) < r}
whenever >0, and let
w(a) = rl_ig:_#[K(a, n]/H"[K(a, n)].

The remainder of the argument is divided into seven parts, leading to the
first conclusion stated in the theorem. The second conclusion may be derived
from the first by the usual algebraic and limit procedure, starting with the
gase in which g is the characteristic function of an H™ measurable set.

Part 1. If ACX, then

a(k)a(m — k)
w(4) £ M* ————— H"(4).
a(m)
This inequality was proved in [F7, §3].
PArT 2. If 4 is an H™ measurable subset of X and

o(y) = H™+(A4 N f1{y})

for yEY, then v is an H* measurable function.

Proof. If H"(A)=0 it follows from Part 1 that 2(y) =0 for H* almost all
yin Y. Since every H™ measurable subset 4 of X is the union of an increasing
sequence of compact sets and a set of H™ measure zero, it will be sufficient
to consider the special case in which 4 is compact.

Forn=1, 2,3, .- - and y& Y let v,(y) be the infimum of
> 2ma(m — k)[diam (S) ]+
sea

where G is a countable open covering of Aﬂf—l{y} such that diam(S) <#n™!
whenever SEG; then

o(y) = lim v,(y).

n— o

e e
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Since A is compact, every open covering of Aﬂf‘l{y} is also a covering of
Af\f—‘{z} provided z is sufficiently close to y. Accordingly the functions v,
are uppersemicontinuous.

ParT 3. If A is an H™ measurable subset of X, then

u(4) = f YHm-k(A Ny} dHry = fAﬂ'(x)dex.

Proof. The first equation follows from Part 2 and the definition of u. It
shows that u is completely additive on the class of all H™ measurable subsets
of X. On the other hand it follows from Part 1 that u is absolutely continuous
with respect to H™. Accordingly u is the indefinite integral of its derivative u’.

Part 4. If a&X =E,, Y =E, f is continuously differentiable in a neighbor-
hood of a and Jf(a) =0, then u'(a) =0.

Proof. Suppose €>0. Since range Df(a) # E; there is a real valued linear
function ¢ on E; such that |¢| =1 and ¢ o Df(a) =0. The continuity of Df at a
implies the existence of a convex neighborhood U of a such that

Iquf(x)| S eM forx & U,

whence

| (gof)(®) — (gof)(z)| < eM|x—z| forx,zE U.
Furthermore, since u is invariant under rotations of E;, one may assume that

) =y  fory € L.
It follows that if S is the endomorphism of E; such that
SO =y -5y, €')  fory € Ey,

then

|(Sof)(x)—(Sof)(z)| §2M|x—z| forx,z & U.

Applying Part 3 to f and So f, and Part 1 to Sof, one concludes that if 4
is an H™ measurable subset of U then

p(d) = | H™*ANf{y})dHy

Ey

= | BAN Sof){S(y)}ldHry

. f H4 N (S0 f)~{w) |dB4w
< e(ZM)" M H'”(A)

a(m)
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PART 5. If aEX=E,, Y=E; and f is continuously differentiable in a
neighborhood of a, then u'(a) =Jf(a).
Proof. In view of Part 4 suppose Jf(a)#0. Since

dim kernel Df(a) = m — k
and both Jf and u’ are invariant under rotations of En, one may assume that
Dif(a) =0 fori=k+1,---,m.
Letting F: E,—E,, be the map such that if x€E, then

[F(x)]t = [f(x)]t fori = 1’ tt ) k,
[F(x)]i = = fori=%k+1,.-:,m,

one sees that
JF(a) = Jf(a) # 0.

Accordingly, if 7 is a small positive number and 4 =K(a, r), then F is con-
tinuously differentiable and univalent on A. For y&E,; let

B, = Eni: N {Z: (Y1, * 0y Py 21, * * y Bmk) € F(A)}»
gv: By = Enm,
8s(2) = (FI ANy, o, e B, Zmk)  for 2 € By,
anﬁd observe that B, is open, g, is continuously differentiable and univalent,
with
range g, = A N f~{y}.
It follows from the classical formula for area (see [F4, 5.9]) that

p(4) = | H=*4 N fy})dH*y

Eg

= f Jg4(2)dLnr2d Ly

Epv By

= Jgwy, - wp(Weg1, * * * 5 Wn)dLnw

= f]gf(:c)(xk+1: <o oy xm)JF(x)dLayx.
A

Accordingly, if 7 & small, then p(4)/H™(A) is close to
Jgr@(@kt, * + -, am)JF(a) = Jf(a).

PART 6. If a €X and f is continuously differentiable in a neighborhood of a,
then u'(a) =Jf(a).

[
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Proof. Suppose 1<t< ». Choose open neighborhoods U of a and V of
f(a), and continuously differentiable maps

P:U— E, and ' Q:V—E,

such that
P(x) — P(
t—lél_._(_x)_____f)_l_ét forx,zEU,
distance (x, 2)
t—lSI_Q_(_y);Q_(KZ_I_ét fory,weV.

~ distance (y, w)

It follows that suitable powers of ¢ will serve as bounds for the effect of P
and Q on Hausdorff measures and Jacobians. In fact suppose that r>0,

A=K(x,rCU and f(4) CV,
let F=Q o fo P! and observe that
ANfiy} = PP NFHMY]  foryE V.
Applying Part 3 to f, and Parts 3 and 5 to F, one obtains

ua) = [ B4 O plphamy
s = [ B {P() NP Q0)) Jarty

st | H*[P(4) N F{q}]dHY

Ey

=fm JF(p)dH™p
P(4)

< i f If[P-1(p)|dHmp
P(A)

=< mt2% f Jf(x)d H™x,
A
and similarly
w(d) = i f Tf(x)dH",
A

Dividing by H™(4) and letting »—0-, one concludes that the extreme
limits of

ﬂ[K(a’ f)]/H’"[K(d, ')]
Q
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lie between
1~ Jf (@) and 122 Jf(a).
ParT 7. If A is an H™ measurable subset of X, then

u(4) = fAJf(x)dH"‘x.

Proof. Proceeding as in [F2, 4.3] or [W1], choose disjoint closed subsets
Ci, Co, Cs, - - - of X and continuously differentiable maps fi, fe, fs, + - - of

X into Y such that
H’"(X— U C.) = 0,

—1
flCi=f|Ci fori=1,2,3,---.
Applying Parts 3 and 6 to f; and observing that
Jfi(x) = Jf(x)

whenever x is a point of density of C; and f is differentiable at x, one obtains

f YHM(A N C; N f{y})dHry
- f H+(A N C; N f7y})dHry
Y

- f Tf(x)dHmx = f Tf(x)dHmx
AnC.'

ANC;

for =1, 2, 3, - - - . Accordingly Part 1 implies that

w(d) = X w4 N C)

i=1

=, Jf(x)dH™x = f]f(x)dH’"x.
=1 v ANc; A
3.2. REMARK. The preceding argument shows also that f—‘{y} is count-
ably Hausdorff m — k rectifiable (see [F4]) for H* almost all y in Y.
In case X is a submanifold of class 1 of E,, H"""(Af\f"l{y}) may be
computed for H* almost all y in ¥ by means of the integralgeometric formula
[F4, 5.14], and one obtains

f H™+(A4 O\ f-1{y})dHry = B(n,m — )1 W(R, 0)d($n ® Lut) (R, 1),

GpXEm—k

where

ey
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wRw) = [ BTACNT R w O () lan'y

is the classical area of f| [ANN™™*(R, w)]. It follows that, if 4 is open in X,
then the above integrals depend lowersemicontinuously on f, and un-
doubtedly it would be possible to develop (for m=%) a theory of “coarea”
dual to the existing (for m <k) theory of Lebesgue area [R; CE; F8; DF].

4. Sets with positive reach. Here these sets are introduced, and are
shown to have quite reasonable metric and tangential properties. If two sets
in suitably general relative position belong to this class, so does their inter-
section. The class contains all convex sets, as well as all those sets which can
be defined locally by means of finitely many equations, f(x) =0, and inequali-
ties, f(x) £0, using real valued continuously differentiable functions, f, whose
gradients are Lipschitzian and satisfy a certain independence condition;
therefore regular submanifolds of class 2 of E,, with or without regular bound-
ary, are included.

The concept of reach originates from the unique nearest point property,
but toward the end of this section it is proved that a closed set has positive
reach if and only if it makes uniform second order contact with its tangent
cones. Then it follows that the class of sets with positive reach is closed under
bi-Lipschitzian maps with Lipschitzian differentials.

4.1. DerinNtTION. If A CE,, then 84 is the function on E, such that

d4(x) = distance(x, 4) = inf { | x — a| : a € 4}
whenever x € E,.. Furthermore
Unp(4)

is the set of all those points xE E, for which there exists a unique point of 4
nearest to x, and the map

£4: Unp(4) —» 4

associates with x&Unp(4) the unique a €4 such that §4(x) = ]x——a] .
If aEA, then

reach(4, a)
is the supremum of the set of all numbers 7 for which
{x: |2 —a] < r} C Unp(4).
Also
reach(4) = inf {reach(4, a):a € 4}.

4.2. REMARK. Suppose A CE,. Then reach(4, a) is continuous with re-
spect to a4, and
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0 < reach(Boundary 4, a) < reach(4, ¢) £ »

for a&Boundary A. If reach(4) >0, then 4 is closed.

A well known characterization of convexity, deducible from 4.8(8), states
that reach(A4) = « if and only if 4 is convex and closed.

4.3. DerFINITION. If A CE, and a €4, then the set

Tan(4, a)

of all tangent vectors of A at a consists of all those # € E, such that either u is
the null vector or for every ¢>0 there exists a point b&A4 with

b—a u
0<|b—a| <e and - <e
|6 —a| |4l
4.4. DEFINITION. If A CE, and a &4, then the set
Nor(4, a)

of all normal vectors of A at a consists of all those vEE, such that
@ % <0 whenever u € Tan(4, a).

4.5. REMARK. Recall that a subset C of E, is a convex cone if and only if
x+yEC and AxE C whenever x, y&C and A>0. For every subset S of E,,

Dual(S) = {v:v @ u < 0 for all u € s}

is a closed convex cone, and Dual [Dual(S)] is the smallest nonempty closed
convex cone containing .S. Furthermore

Dual(S; + S2) = Dual(S;) N Dual(Ss)
for any two subsets S; and S; of E, containing the origin, and
Dual(S; N S2) = Dual(S;) + Dual(S,)
in case S; and .S, are closed convex cones. Also, for every closed convex cone C,
dim C + dim Dual(C) = »

with equality holding if and only if C is a vectorspace.
Accordingly

Nor(4, ¢) = Dual[Tan(4, a)]

is always a closed convex cone, while Tan(4, ) is closed and positively homo-
geneous but not necessarily convex.

4.6. REMARK. If 4 is a submanifold of class 1 of E,, f: A—E, is the inclu-
sion map, and a €4, then df maps the intrinsic tangent space of 4 at a iso-
metrically onto Tan(4, a).

4.7. LEMMA. Suppose f is a real valued Lipschitzian function on an open
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subset W of E., j is an integer between 1 and n, and g is a real valued continuous
function on W such that
Dif(x) = g(x) whenever f is differentiable at x.
Then
Dif(x) = g(x) forallxE W.

Proof. Suppose wE W, r>0 and {x: |x—w| <2r} CW. Let y be the jth
unit vector. According to Rademacher’s theorem f is differentiable L, almost
everywhere in W, and for L, almost all x within 7 of w it is true that

G+ ty) — () = f Dif(x + uy)du = f ¢(x + uy)du

whenever ]tl <r. From the continuity of f and g it follows that

t

flw + ty) — f(w) =f g(w + uy)du whenever |t| <r,

and finally that D;f(w) =g(w).

4.8. THEOREM. For every nonempty closed subset A of E., the following state-
ments hold, with =234, £=£4, U=Unp(4):

(1) |6(x)—6(y)| = |x—y[ whenever x, yS E,.

(2) If a€A and

P={vtla+o) =a}, Q={véla+v)= |0}

then P and Q are convex and P CQCNor(4, a).

3) If x€EE,—A and § is differentiable at x, then x& U and
® — £2)

8(x)

grad 6(x) =

(4) £ is continuous.
(5) 6 is continuously differentiable on Int(U—A) and &% is continuously
differentiable on Int U with

grad 6%(x) = 2[x — £(x)]  for x € Int U.
(6) If €A, vEE, and
0<r= sup{t:E(a+ tv) = a} < o,

then a+7v€&Int U.
(7) If x€ U, a=&(x), reach(4, a) >0 and bEA, then
EEINERE]

(#=0) @ (=82~ 2 reach(4, a)
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8B) If 0<r<g< w0, x&U, yc U and
8x) =, 8(y) =r, reach[d,{(x)] 2 ¢q  reach[4, ()] 2 ¢,

then
q
q—r
(9) If 0<s<r< reach(d4), then grad é is Lipschitzian on {x: s<d(x)<r},
and grad 8% is Lipschitzian on {x: d(x)<r}.
(10) If a €A, then

|z —y].

| €2) — £(9) | =

Tan(4, a) = {u: lim inf ~%8(a + tu) = 0} .

t—0+
(11) If a€A, reach(4, a)>r>0, ucSE, and
u®v=<0 whenever E(a+ v) = a, |v| =7,

then

lim ~%(a + tu) = 0.
t—0+

- (12) If a€A and reach(4, a)>r>0, then
Nor(4, a) = {)\v:)\ =0, Ivl =7 ta+0v) = a},
Tan(4, a) is the convex cone dual to Nor(4, a), and
lim t%(a+tu) =0  for u & Tan(4, a).
-0+

(13) If
N = {(a, 2):eE A and v € Nor(A,a)},
o: N — E,, o(a,v) = a+ vfor (a,v) €N,
Y:U— E, X E,, ¥(x) = (£(x), x — £&(x)) for x € U,

then

o(N) = E., o is Lipschitizian,

Y(U) C N, ¢ is a homeomorphism, ¢~ = o | Y(U).
If furthermore

KC A4,0<r<gq,reach(4, a) = qfor a € K,
W =UN {x: £@x) € K and 5(x) < 1},

then
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y(W) = NN {(a,v):aEK and lvl =< r},
Y| W is Lipschitzian;
in case K is compact and 0=t < o, then
NN {(a,v):a EK and |v| =t} is compact.
Proof of (1). Choosing a4 so that §(x) =|x—a|, one obtains
63 — o) = |y —e| = [2—a| = [y—=].
Proof of (2). Assume ¢=0 and note that
vE€ Pifandonlyif |5 —v| > |o|forallb € 4 — {a},
vE Qifandonly if |5 —v| = | 9] forallb € 4.
Furthermore
|b — v|2 — Ivl2 =0b@® (b —2v) whenever b,v E E,,
and consequently, if b, v, wEE,, s=0, t=0, s+t=1, then
|6 — (sv+tw)|2— |sv+ tw|2 =0 @ (b — 25v — 2tw)
=b@ [s(b—20)+ t(b — 2w)] = sb @ (b — 21) + 1b @ (b — 2w)
=s([b =02 = o)+ u|b—w|*— |w]).
It follows that P and Q are convex, and clearly P CQ.
Finally suppose v& Q. If b&4 — {a}, then Ibl 2>2b @v, hence
vt <ol

lo] = 2

This shows that v@# =<0 for u&ETan(4, a).
Proof of (3). If a€A4 and §(x) =|x—a/, then (2) implies
8[x + tla — x)] = 8(x) — t6(x) for0=t=1,

whence
x—a_ Dé(x)(a — x) 1
3(x) —5(x)
Since |grad 3(x)| =1, by (1), it follows that grad 8(x) = (x—a)/3(x).

Proof of (4). Otherwise there exists an €>0 and a sequence x, X3, %3, * * *
of points of U convergent to a point x& U and such that IE(xi) —S(x)l = e for
1=1,2,3,- .. Then

| E(x) — x| =8(x),  |&@=) — x| <6(x) + 2| % — x|,
hence all the points £(x;) lie in a bounded subset of the closed set 4, and pass-
ing to a subsequence one may assume that the sequence £(x1), £(x2), £(x3), - - -

grad 6(x) @
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converges to a point aEA. But then

8(2) = limé(xy) = lim | &(x) — x| = | a — 2,
{— o0

t— 0

hence a =£(x), which is incompatible with

la— & | = lim | &) — &) | z e

Proof of (5). According to (1) and (4) the right member of the equation
in (3) represents a continuous map of U—4 into E,. Since the components of
the left member of this equation are D;6(x), « - -, D,8(x), it follows from
Lemma 4.7 that § has continuous partial derivatives on W=Int(U—A4).

In case x & W, the stated formula for grad 8%(x) follows from the equation
in (3). In case x4, §*(x+h) = lhl 2 for hE E,, hence grad §%(x) =0, and also
£(x) =x. Accordingly the formula holds for all x&Int U, and the continuity
of the right member, guaranteed by (4), implies the continuity of grad 42
on Int U.

Proof of (6). Assume |2| =1 and y=a+7vE€Int U. Then (4) and (3)
imply that £(y) =a, 8(y) =7, y &4, grad 8(y) =v.

In view of (5) one may apply Peano’s existence theorem for solutions of
differential equations to obtain an >0 and a map

, C:{s:—r<s<r}>Int(U — 4)
such that
C'=(grad8)oC and C(0) = y.
If |s| <7, then | C'(s)| =]|grad 8[C(s)]| =1 and
(60 C)'(s) = grad 8[C(s)] @ C'(s) = C'(s) ® C'(s) = 1.
Accordingly, if —r<p<g<r, then

[F1e@la= [ 600w =slc@] o] s | c@ - ol

It follows that the curve C parameterizes a straight line segment in the
direction C'(0) =grad 8(y) =v.
If 0<s<r and t=71+s, then

C)=y+sv=0a+tw, 6[C(s)]=6(y)+s=t=|C(s)—a|,

hence £(a+tv) =a, with ¢>7, contrary to the definition of 7.
Proof of (7). Assume x>£¢a and let

x—a

S = {t:E(a+tv) = a}.

v = Ix—a—_l—’
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Since Ix-—al €S, sup S>0 and it follows from (6) that
sup S = reach(4, a).
Moreover, if 0 <tE.S, then
la+w—0| 26@a+n)=1t, |a—b2+20@(a—0)+r22
@ @—b)=—|a—b2, x—a)@(@—0=— Ia-—b|2|a;—a|/2t.
Proof of (8). Letting a =£(x) and b=£(y), one infers from (7) that
(x—a) @ (a@a—0) = — Ia—b|2r/2q
and symmetrically
(y—b) @®—0a)=—|b—altr/2g.
Therefore
le=y[-la-b] 22— @ @-1?)
[@—0)+@—a)+ (G —y]®(@—b
|a =21 = r/g),
2=yl 2 |a—0|l@—n/q

Proof of (9). Combine (8), (1), (3) and (5).
Proof of (10). Suppose ¢ =0 and ]u[ =1.
If uET(4, a) and €>0, then there exists a point &4 such that

2
=

0< |b] <e and <e¢

T‘b—l—u

hence

|el7o([ o) = [8]7] 8] w — 8] =

il
u—+—7|<e
| 2]

On the other hand, suppose that whenever 0 <e<1 there exists a number
t such that

0<t<e and 9(u) <e;
choosing b€ 4 so that 8(tu) = |tu—b|, one finds that
[t— o] | so(u) <e, 0<A—et<|b] <U+t<e+ e,
b b— |b|u b—tu| 4+ [t—|b 2et 2e
lm_“‘=| Ill’l| Y Ilbll III§(1—e)z=1—e'
Proof of (11). Suppose a =0, [u[ =1 and

lim sup ~%(¢x) > O.
=0+

e ¢ e e e sy <oy
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Choose € and S so that

0 <e<reach(d,a) —r, SC{1:0<t<¢,

0 € Closure S, o(tu) > tefort € S.
If t&S, then

o(tu) < I tu| = { < e < reach(4, a), me U.
Fort€S,0=p=rlet

n(t, p) = tu + p grad 8(tw) = £(tu) + [3(tw) + p] grad 6(tu)
and observe that
| 2(t, p)| < e+ 7 < reach(4, a), 7(t, p) € Int U.
It follows from (6), with @ and v replaced by £(¢#) and grad é(¢u), that
g[n(t, )] = £E(tu) whenever ¢t E S.

Inasmuch as {n(t, r):tES } is bounded, one may assume, after replacing S
by a suitable subset, that there exists a point ¥&EE, for which

lim g, ) =0
8§31t-0

Then

|v] = lim |40 =7, o€,
§3t—0

lim £[n@, ] = q,
8§10

£()
and consequently, by hypothesis, « ®v<0.
Choosing tE€.S so that
u @ n(t, r) <er,
one may use the fact that
s[at, ] = (e, 7|
to obtain
[o(w) + 7] < | tu + [nCt, 1) — tu] |2,
[6¢tw)]? + 2rd(tw) + 72 < 2 + 2tu @ [9(t, 7) — tu] + 72,
2r5(tu) < 82 4 2ter — 212 < 2er,

hence 8(tu) <te, contrary to the choice of € and S.
Proof of (12). Since {a+v: || =7} CU, the set

S={)\v:>\;0, lv| =r,£(a+v)=a}

S —
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is closed. Clearly S is positively homogeneous. In order to verify that S is
additive, suppose
A>0, |v] =7, ta+o)=q u>0, |w| =7, &+ w) =aq,
let
2=\ + ) '(\v + pw),

and use (2) and (6) to infer that

£ + 2) = q, £ + r| zl“z) = g,

M+ pw = (| Ao+ pw| r)(r] z|%) € S.

Thus S is a closed convex cone.
Now let

L= {u: lim +%(e + tu) = 0} .
-0+
One sees from 4.5 that
Tan(4, @) C Dual[Nor(4, a)],
from (2) that
S C Nor(4, a), hence Dual[Nor(4, a)] C Dual(S),
and from (11) and (10) that
Dual(S) C L C Tan(4, a).
Accordingly
Tan(4, a) = Dual[Nor(4, a¢)] = Dual(S) = L,  Nor(4, a) = S.

Proof of (13). One sees from (2) that if x€E,, aEA4 and §(x) = Ix—al ,

then
x — a € Nor(4, a), (a,x — a) EN, o(a, x — a) = x.

In case x& U, then a=£(x), ¥(x)=(a, x—a), o[¢(x)]=x. This implies the
first part of (13). The second part follows from (12), (2), and (8); in case K
is compact, so are W, ¢(W) and the image of (W) under the transformation
mapping (a, v) onto (a, ir~'v).

4.9. COROLLARY. If >0 and A,= {x: 8,4(x)<s}, then

84,(x) = 04(x) — s whenever 54(x) = s,
EA[EA,(x)] = E4(x) whenever 84(x) < reach(4),
reach(4,) = reach(4) — s.

Furthermore, if 0 <s<reach(4) and A!= {x: da(x)=s}, then
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04;(x) = s — 04(x) whenever 0 < da(x) =5,
Ealtai(x)] = £a(x) whenever 0 < 64(x) < s,
reach(4y) = s.

Proof. The formula for d4, follows mechanically from the definitions, and
the formula for 4,/ may be derived with the aid of 4.8 (6). Then the state-
ments concerning reach and £ can be obtained from 4.8 (5) and (3), applied
to A, Asand 4/.

4.10. THEOREM. Suppose

A and B are closed subsets of E,,
C is a nonempty compact subset of A (M B, r > 0,

reach(4, ¢) > r and reach(B,c¢) > r for ¢ € C,

and there exist no ¢ and v such that

ceC, v € Nor(4, ¢), —v & Nor(B, ¢), v # 0,
Let m be the infimum of the set consisting of 1 and the numbers
|0+ ]
lo] + [

cerresponding to vENor(4, ¢), wENor(B, ¢), cEC with |vl +l'wl >0.Then:
(1) 0<n=1 and there exists a { such that 0 <¢{=r and

| X grad 84(x) + p grad dz(x) | > (/2 + &)

whenever xE E,— (A\UB), d¢(x) <, A>0, u>0.
(2) dans(x) = (2/n)[84(x)+085(x) ] whenever 8c(x) <nf/5.
(3) If c<C, then
Tan(4 M B, ¢) = Tan(4,¢) M Tan (B, ¢),
Nor(4A M B, ¢) = Nor(4, ¢) + Nor(B, ¢).
(4) If cEANB, 0<p=rn/2 and
ANBN{z:|s—¢| <2} CC,
then reach(4MB, ¢) Zp.
(5) If C=ANB, then reach(ANB)=ry/2.
Proof of (1). For 0= e=r let
S) = AN{a:dcla) e}, T() = BN {b:8c(0) < ¢},
M(e) = {(a,v): a € S(e), v € Nor(4, a), |v| =1},
N(e) = {(b, w): b € T(e), w € Nor(B, b), | w| < 1},
Ple) = [M() X NI N {((a,2), (b, w)): |a—b]| ¢ |v]| + |w]| =1},
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observe that S(e) and T'(¢) are compact with
reach(4,a) > r — ¢ for ¢ € S(e),
reach(B, b) > r — ¢ for b € T(e),

and use 4.8 (13) to infer that M{(e), N (€) and P(e) are compact. Furthermore
let A be the function on P(r) such that

A((e,9), (0, w)) = | v+ w| for ((a, 1), (b, w)) € P(r),

and note that A is a continuous function, A does not vanish on P(0), and either
P(0) is empty or 7 is the minimum value of A on P(0), hence 0 <7 <1. More-
over, since

PO) = N P,

0<e<r

one may choose € so that 0 <e<r and the minimum value of A on P(e) ex-
ceeds /2.
Let { =¢/2 and suppose

*rEE,—(AUB), cx)<¢ A>0, u>0.
Choosing a, b, v, w so that
a€ A4, d4(x) = Ix—al , bE B, &z(x) = Ix—bl,
(N + w)v = Ngradd4(2), (\+ w)w = pgrad oz(x),
one readily verifies with the help of 4.8 (2) that
((a, v), (b, w)) € P(e), hence |ov+ w| > q/2.
Proof of (2). Letting
¥ = [(4)* + (85)2]'7,
Q= {x:dc(2) < ¢} — (4N B),
one sees from 4.8 (5) that ¥ is continuously differentiable on Q. Furthermore
| grad ¢(2)| 2 n/2  forx € Q.
In fact, if x€Q—(4\UB), then
grad (%) = [54(x) grad 64(x) + 85(x) grad 85(x)] /¥ (x),
| grad ¥(@) | = (1/2)[64(®) + 88| ¥ (2) = n/2
by virtue of (1); on the other hand
grad ¢(x) = grad §z(x) forxe QN 4,
grad ¥(x) = grad §4(x) forr & QN B,
hence |grad \P(x)| =1 for x€EQNM(4\UB).
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Fix a point z2&Q such that §¢(z) <n{/5 and consider the class of all maps

¢:J—0Q
such that J is an open real interval containing 0,
g(0) =2 and ¢ = — (grady)ogq.

Since this class is nonempty, according to Peano’s existence theorem for solu-

tions of differential equations, and is inductively ordered by extension, it

has a maximal element. Henceforth let ¢: J—Q be such a maximal element.
If t&J, then ¢'(t) = —grad ¥[q(#) ], hence

ld@W|zn/2, Wog'(t) =gradv[gt)] @ ¢) = — | W) |
It follows that if 0 <u&J, then
¥(@) = ¢[g0)] = ¢[(0)] — ¢lg(w)]

- [lewraz am f ¢ dt 2 wnt/a.

Consequently 7=sup J < « and there exists a point A€ E, such that
lim ¢(¢) = &,

t—r—

|h—3| = f g0 dt = @) = @/m)ba) + 8@

The proof will be completed by showing that A& A4 MNB. Otherwise, since
de() £ | h— 5| 4 8c(2) < [(4/n) + 1la(a) < &,

it would be true that AEQ, and Peano’s existence theorem would furnish an
€>0 and a map

p:{t:-r—e<t<-r+e}—+Q
for which p(7) =h and p'= —(grad ¢) o p. Inasmuch as
lim ¢'(f) = lim — grady[g()] = — grady (k) = p'(v),

tosr— tvr—
the map
P:]U{t:r§t<r+e}—>Q,
P(t) = q(t) fort € J, Pty =p()forr=t<7+e
would be a proper extension of ¢: J—Q with
P(O) =2z and P’ = — (grady)o P,

contrary to the maximal property of ¢.
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Proof of (3). Inasmuch as
danp(x) = 64(x) and danp(x) = 65(x) for x € E,,
threefold application of 4.8 (10) yields
Tan(A4 N B, ¢) C Tan(4, ¢) N Tan(B, ¢).
On the other hand, if u&Tan(4, ¢)N\Tan(B, ¢), one infers from 4.8 (12) that
lim ~%4(c+tu) =0 and lim #(c + tu) = 0,

t—0+ t—0+
hence from (2) and 4.8 (10) that
lim %4ns(c + tu) = 0, u & Tan(4 N B, ¢).

t—0+

This proves the first equation in (3), and the second now follows from 4.5 and
4.8 (12).

Proof of (4). Suppose Ix—cl <p, 3€ANB, d4np(x) =|x—z|.

One sees from 4.8 (2) that x—2&ENor(ANB, 2). Inasmuch as

lz—¢| = |s—2| + | # —c¢| < bansx) + |« — ¢| <2|x—c| <2,
hence 2&C, it follows from (3) that there exist v and w with
v € Nor(4, 2), w & Nor(B, 2), v+ w=1x—2z
Now n(|2| +|w|) < |v+w| = |x—2| <p=rn/2, hence
|20] =7 and |2w| =1

Since reach(4, z) >r and reach(B, z) >7, one infers from 4.8 (12) that

£a(z4 20) = 2z and £3(z + 2w) = 2.
Recalling that z2&AMB one obtains

(anp(z+ 20) =z and £anp(z + 2w) = 2,

and one concludes from 4.8 (2) that

z = £anslz + (20 + 20)/2] = Eans(x).

Proof of (5). Applying (4) to all c¢&€C with p=ry/2.

4.11. LEMMA. Suppose f is a continuously differentiable real valued function
on an open subset of E,, grad f is Lipschitzian, and

A={x:f(x)=0}, B={x:f(x)§0}.
If a€ A and grad f(a) #0, then 0 <reach(4, a) <reach(B, a).

Proof. Let M be a Lipschitzian constant for grad f, and choose positive
numbers % and r such that
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|grad f(w) | = & whenever |w —a| <7.

It will be shown that reach(4, a) gs=inf{r/2, h/M}.
Suppose |x—a| <s,bEA4,cEA4, |b—x| =|c—x| =84(x). Then |b—a| <7,
|c—a| <7 and Taylor’s Theorem implies that
| 7(e) = J®) = (c = b) @ grad J®) | = | ¢~ b[*M/2.
Furthermore f(c) =f(5) =0, and since x—b&Nor(4, b) according to 4.8 (2)
there exists a real number ¢ such that
x — b =t grad f(b).
It follows that
[2(c—0) @ (b— %) |c—ol2m|e],
0= |c—al2—[b—x[2=|c—b]2+2(c—0) ® (b — %)

A

2 |o— b1 - M|,
WM > [x—b] = |t]-[gradf®)| 2 [¢| k1> M| 1],
hence |c—b|2=0.
4.12. THEOREM. Suppose fi, - - -, fm are continuously differentiable real
valued functions on an open subset of E,, grad fi, - - - , grad f., are Lipschitzian,

0=k=<m, and

{x:f;(x) = 0} N F] {x:f,»(x) = 0}.

1 t=k+1

A4 =

I D

1

Ifa€A, J={i:fi(a) = 0} , and there do not exist real numbers t;, corresponding
to 1< J, such that t;5%0 for some 1E J, t;=0 whenever i< J and i >k,

Z t; grad fi(a) = 0,

et
then reach(4, a) >0 and
Nor(4, a) = { > tigrad fi(a): t; = O whenever i > k} .
et
Proof. Using 4.11 and 4.10, apply induction with respect to m.

4.13. THEOREM. Suppose €¢>0. If A1, A, As, - - - and B are closed subsets
of E, such that reach(4:) =€ for k=1,2,3, - -+ and

b4, (x) — 8p(x) uniformly for x € C as k— =
whenever C is a compact subset of {x: 8p(x) <e}, then reach(B) =€ and
£4,(x) — Ep(x) uniformly for x € C as k— »

whenever C is a compact subset of {x: dp(x) <e}.
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Proof. Suppose C is a compact subset of {x: 3z(x) <e}. Choose an open
set W such that CCW and the closure of W is a compact subset of
{x: 85(x) <€}, a number 7 such that

sup {BB(x): x E W} <r<eg
and a positive integer K such that
sup{aAk(x):xE W} <7 for k = K.
It follows from 4.8 (8) that the functions EAkl W corresponding to k= K have
the common Lipschitz constant ¢/(e—r), and hence from 4.8 (5) that the
functions (84,)? are equiuniformly differentiable on W. Since
62,,(3:) — BZ(x) uniformly for x € Wask — «,

one infers that (85)? is uniformly differentiable on W and

grad Py (%) — grad 6123(x) uniformly for t € W as k — .
Finally one uses 4.8 (3) and (5) to conclude that WC Unp(B) and
£4,(x) — Ep(x) uniformly for x © Was k— .

4.14. REMARK. Observing that if 4 and B are nonempty closed subsets of
E,, then

sup | 84(x) — 8a(x) |
& En
equals the Hausdorff distance between 4 and B, one sees from 4.13 that for
each €>0 the set
{4:0 % A C E, and reach(4) = ¢}

is closed with respect to the Hausdorff metric. It follows that if €>0 and K
is a compact subset of E,, then

{4:035 4 C K and reach(4) = ¢}

is compact.

4.15. REMARK. The reasonable local behavior of a subset 4 of E,, such
that reach(4) >0, is further illustrated by the following properties:

(1) If pEE, and 0<r<reach(4), then

AN{x: | — p| <1} is contractible.
(2) If a€A, dim Tan(4, a) =k and
Pir)=AN {x: |z — al <r}, Q(r) = Tan (4, a) N {u: lul <r},
whenever r >0, then dim (4) =k and
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H*[P
lim inf —[——(Ql = 1.
oo+ HH[Q(r)]
(3) For k=0,1, - - -, n the set
A® = AN {a:dim Nor(4, a) = n — k}

s countably k rectifiable.

(4) Ifdim(A) =k, then A =A® £ A *D gnd, for a4 — A%V, Tan(4, a)
is a k dimensional vectorspace.

To prove (1), consider the homotopy % such that

h(x, 8) = £a[(1 = ) + 1p]
whenever x€4, |x—p| <7, 05t=1.
To prove (2), assume a=0, let U be the k& dimensional vectorspace con-
taining Tan(4, a), and consider the continuous maps
fe Q) > U,  flu) = (v 0 £4) (tw) for u € Q(1),

corresponding to 0 <¢<reach(4). Inasmuch as

| fe(w) — u| = 1] gulta(tn) — tu] |
< | Eatu) — tu| = %64 (tw)

for #€Q(1), and since one easily sees from 4.8 (12) that {164 (f#)—0 uni-
formly for u€Q(1) as t—0+, it follows that as t—0+ the maps f; converge
to the inclusion map of Q(1) into U, whence dim(4) = k.

Given any € such that 0 <e<1, one may choose p>0 so that if 0<t<p
then

164(tu) < € for » € Q(1),
B flom]) > (1 - 9BQ()].
One concludes that if 0 <7 <p and ¢=r(1-+¢€)7!, then

elo®] C P@),
. [o(D)] = (v o £)[Q®)] C Eu[P(r)],
HP(r)] 2 +HH([Q(D)]) > (1 4+ o~*+(1 — 9 H[Q(1)]
= (14 ¢7*(1 — o B*[Q(r)].

To prove (3), let S be a countable dense set of & dimensional planes in
E,, suppose 0 <r <reach(4), observe that

A® C U gfe N {x: da(x) <7},
s€ES
and recall 4.8 (8).
To prove (4), first use (2) to infer that if aE 4, then
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dim Tan(4, ¢) < dim(4) <k, hence a & A®;
in case a A4 *=V, then
dim Nor(4, ¢) = n — k, dim Tan(4, a) = &,
dim Nor(4, a) 4+ dim Tan(4, @) = #,

hence Tan(4, a) is a k dimensional vectorspace. On the other hand (3) iraplies
that H*[4*D]=0, hence dim 4%V <k —1 according to [HW, VII], and
consequently 4 (CA4 *-1,

4.16. LEMMA. For every nonempty closed subset S of E,,
[65(%)]% + [6puarcs)(®)]2 = I x|2 whenever x € E,;
furthermore S is a convex cone if and only if
[6s(2)]2 + [bpuarcsy(#)]? = | |2 whenever x E E,.
Proof. If x € E,, u €S, 8s(x) = | x —u|, then either |x—u| = |x| orx@u>0,
Dual(S) C Dual({«}) = {v:9 @ u < 0},
8pua1(5)(*) Z Spuar(up(®) = (x @ u)/l ul,
[8s(®)]* + Powarsy@]? 2 | — u[>+ [(x @ w)/| u] ]2
[+ [[u] = = @w)/]ull2z | =]
in case S is a convex cone it is also true that
S C Tan(S, »), % — u & Nor(S, ») C Dual(S),
{u, —u} C Tan(S, ), (x—u) ®@u=0,
lef?= o —ul+ |2~ @~ 0?2 5@ + boww @],

and consequently the equation of the lemma holds.

To prove the converse, suppose S is a closed set such that the equation
holds whenever x&€ E,. Since the equation also holds with S replaced by
Dual(S), one finds that

85(%) = SpualDual(s)1(*¥) whenever z € E,,
hence S=Dual[Dual(S)].
4.17. LEmMMA. If A is a closed subset of E,, 0<t< o, r>0 and
Sranca,0(d — @) S | b — a|/(20)
whenever ¢, bEA with |a—b| <27, then reach(4) Zinf{r, t}.
Proof. Suppose 34(x) <inf{r, t}, a€4, bEA,
da(x) = lx—-al = Ix—bl,

and assume a=0. Then |b| £|b—x| +|x| <2r,
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x € Nor(4, a), Tan (4, a) C Dual({z}) = {'u: v @ x < 0},

I ] < puat(ia)y(d) = Sranca,ey (D) < | 512/2%

0=|b—x2— |z]2=|sP—20@x= |b](1 = |x|/)>0
unless b=0.

4.18. THEOREM. If A is a closed subset of E, and 0 <t< =, then the follow-
ing two conditions are equivalent:

(1) reach(4)=t.

(2) Sranwa.0(b—a) < |b—a|?/(2t) whenever a, bEA.
Accordingly

reach(4)™! = sup {ZI b— a| Wranay(b —@):a E 4,0 € 4,0 # b},
where 0~1= » and ©~1=0.

Proof. Applying 4.17 with r= « one finds that (2) implies (1).
Now assume (1) and suppose a=0€4, bEA. If v&Nor(4, a), then
v@ (=b) = — |b]2] o] /2t
according to 4.8 (12) and (7), hence
[5—olt= |82+ [o]? 26 @0z [5]2+ |o]? = [5]*] 0] /2
z |o]* = [o]v/@n).
Consequently
[ororcam®)]? 2 | 8]2 = [ B]4/(4),

and it follows from 4.8 (12) and 4.16 that [drenca.a(0) ]2 ] b4/ (42).
4.19. THEOREM. If A CE.,, reach(4)>t>0, s>0 and
f:{a:8a(x) < s} — Enm

is @ univalent continuously differentiable map such that f, f=1, Df are Lipschitzian
with Lipschitz constants M, N, P, then

reach[f(4)] = inf {sN~1, (Mt~ + P)"N-2}.

Proof. Suppose a €4, bEA and |f(b) —f(a)| <2sN-L.
Applying 4.18 choose #ETan(4, a) so that

|6 —a—ul = |b—al/Q).
Then Df(a)(#)ETan [f(4), f(a)] and
| DF(@)(® — @) — Df(a)(w)| < M| b — al?/(20).

Furthermore |b—a| <2s, 84[Aa+(1—N)b]<s for 0=A=1, hence Taylor’s
Theorem implies that

v
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| /(8) — f(a) — Df(@)(d — a)| < P|b— a|¥/2.
Accordingly

Stantray 1@ [f(B) — f(@)] S (M1 + P)| b — a|?/2
< (M + P)N?| f() — f(a) /2.

Use of 4.17 completes the proof.

4.20. REMARK. It may be shown that under the conditions of 4.15 (4) the
set 4 %=1 is closed and the set 4 — A ®~1 is a k dimensional manifold locally
definable by equations fi(x) =0, « « «, fa—s(x) =0, where f1, - - -, fa_ are real
valued continuously differentiable functions with linearly independent
Lipschitzian gradients.

A related proposition states that a Lipschitzian map g: E,—E, has a
Lipschitzian differential if and only if the subset g of E, X E, has positive
reach.

Among those subsets 4 of E, for which reach(4) >0 the k¥ dimensional
manifolds may be characterized by the property that Tan(4, @) is a k dimen-
sional vectorspace for each a €4.

If >0, then the class of all 2 dimensional submanifolds 4 of E, for which
reach(4) ¢ is closed relative to the Hausdorff metric; likewise closed is the
class of all subsets A of E, such that reach(4)=¢, dim(4) <k and 4 is not a
k dimensional manifold.

4.21. REMARK. Suppose m=n, X is an open subset of E,, f: X—E, is a
continuously differentiable map, f and Df are Lipschitzian with Lipschitz
constants M and P, and

Q = inf{Jf(x): x € X} > 0.
If A CE,, reach(4)>¢t>0, >0 and
EnN {21 8m0y(2) < 7} C X,
then
reach[f-1(4)] = inf{r, QM»(M?~1 + P)-1}.

5. The curvature measures. In this section several versions of Steiner’s
formula are derived by a modification of the classical method of [W]; the
main innovation is the use of the algebra A**(E). By means of Steiner’s
formula the curvature measures corresponding to a set with positive reach
are defined, and their basic properties are established. The proofs of the
cartesian product formula and of the generalized Gauss-Bonnet Theorem were
partly suggested by [H, 6.1.9] and by [A; FE1].

51. LEmMA. If h: E,—E, is Lipschitzian, VCE,, h|V is univalent,
(k| V)~ is Lipschitzian, a €V, E,— V has L, density 0 at a, and h is differenti-
able at a, then Jh(a)>0.
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Proof. Let M be a Lipschitz constant for k. Suppose a =0,
u € kernel Dh(a), |u| =1, 0<e<1,
and choose 7>0 so that | h(ru) —h(a)| <er and
L.({z: | 2| <r+ e} = V) < aln)er
Then there exists a point v€ V for which |v—ru| <er, hence
[ k() — h(a)| = | k() — k(ru)| + | k(ru) — h(a)| < Mer + er,
| ho) — i(@)| _ Mer+ e (M+1)e

|v — af r—e 1 —c

In view of the arbitrary nature of ¢, this conflicts with the assumption that
(k| V)~ is Lipschitzian.

5.2. LEMMA. Suppose:

(1) P is a k dimensional Riemannian manifold of class 1.

(2) 6y, - - -, 0k are continuous differential 1 forms of P.

3) e, - - -, €xy f1, * * *y fa—k, g are Lipschitzian maps of P into E,.

(4) For pEP, 1, is the tangent space of P at p.

(5) C s a closed subset of E,.

(6) Q is a bounded Borel subset of P, g(Q)CC, g\ Q s univalent, (g[ o)
is Lipschitzian.

(7 If pE€Q, then

(01| To)y * * (0k| Tp) are orthonormal,

ep), - - -, e(p), f1(p), - -+, fai(P) are orthonormal,
n—k
Nor([C, g(p)] C { 2 ufi(p):z € En_k} ,

j=1
n—k
5) = Bex fai [3] =1 ond S sip) € NorlC, g}
=1
8) If p€Q and g, f1, * « + , fax are differentiable at p, then

® ®

A [(dg| m») @ ei(p)] is a positive multiple of A (0¢| To)s

. i=1

=1

G(p) = 2 [(dg| ) @ ei(p)] ® (6

=1

TP) S AI'I(TP))

k
Fi(p) = 2 [fi] ) @ es(p)] ® (8:] ) E ALY forj=1,- -, n—k

=1

n—k m
tn(p) = m!t f [ > szf(p)] dH—15 € Amn(r,)  form = 0,1, - -, k.
S(p)

=1

N .
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(9) 0=r<reach[C, g(p)] whenever pEQ.
Under these conditions the following formula holds:

L.({x:8c(x) S 7 and Eo(x) € g

m=0

k
= D rktm(y — B 4 )t trace[(k — m) FIG(P) ™ un(p) |dHEp.
Q

Proof. Let h: PXE,_1—E,,

n—k

h(?» Z) = g(P) + Z: szi(P) for (P: Z) € PX En—k’

n—k
V= (PX E.i) N {(p, 2:p€Q, | 2| =7, 2 2fi(p) € Nor[c, g(p)]} ,

=1

W = {a:80(x) < 7, £o(2) € g(0)},

and note that % is Lipschitzian. Using 4.8 (13) with 4 =C and K =g(Q), one
also sees that (V) =W, k| V is univalent and (k| V)~'is Lipschitzian. Further
let

Y:PX E,r— P, Y(p,2) = p for (p,2) €E P X Enz,
and let Zy, + + -, Z,_& be the real valued functions on PXE,_; such that
Zi(p,2) =z for (p,2) EP X Epry, j=1,-++-,n—kF.
Accordingly

n—k

h= (gO Y)-l— ZZj'(ij Y)

If (p, 2)EQXEq and T is the tangentspace of PXE,_; at (p, 2), then
dY maps T onto 7,, inducing

V*: N*(z,) — A*(T),
and the linear functions
Y*(0u] 1), - -y Y*6k| 70), dZ4| T, - - -, dZui| T

form an orthogonal basis of AY(T). If g, fi, « - -, fas are differentiable at p,
then % is differentiable at (p, z),

n—k
(@h| T) @ ep) = Y*[(dgl ) @ alp) + S u(df| 7 @ ei(m]
fors=1, .- -, kand

n—k
k| T) ® fu(p) = (dZ,| T) + V* [(dgl ) @ fu(p) + Z} z(df;| 75) @ f,<p>]
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for s=1, - - -, n—k, hence

[(dk] T) ® ei(p)] /\"/_\ [(dk] T) ® £.(p)]

i=1

(1_1[(dg| ) @ ep) + "f z(df;| ) @ e,(p)]) /\n/__\k dz.| T)

tace (b1 69) + 2 59| VA @l AN Gz D,

Jj=1 =

and therefore

n—k
Jh(p, z) = |trace <k" [G(p) + Z 2;F; (p):l )
Now consider the case in which (p, 2)E V and (PX E,_) — V has density 0 at
(p, 2). It follows that if 0 <¢=1, then (p, tz) &V and (PXE,_x) — V has den-
sity 0 at (p, tz). Accordingly Lemma 5.1 implies that

trace (k!— [G(p) + nff tz;F ; (p)] )

for 0<¢=<1. Since the quantity inside the absolute value signs depends con-
tinuously on ¢, and is positive for =0 by virtue of (8), this quantity is posi-
tive for 0=<¢t=<1. One infers that in the formula for Jk(p, 2) the absolute
value signs may be omitted, for H» almost all (p, 2) in V.

Using standard integral formulae and the binomial theorem one finally
computes

0 < Jh(p, t2) =

L(W) = fvfhu), DAHp, 2)

= f f f Jh(p, 2)dH*'2dtdH*p
(Al t8(p)

= f f k=1 Th(p, tz)dH "+ zdtdH*p
S(»)

f f (k1 f trace (k" |:G(j7) + nz-i,‘lZ;F (?)] ) dH"*"1zdidH*p
S(p)

f trace ( f k=1 E m(k — m)"'\G(p)™
Q 0

8 (p) m=0

n—k m
m!‘l[ > sz,-(p)] dH""“lzdt) dH*p

=1
k

= D> rktm(y — k4 m)“f trace[(k — m) "1G(p)™un(p) |dH*p.
Q

B S
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5.3. COROLLARY. Suppose

(1) P is a k dimensional submanifold of class 1 of E,.

(2) f1, * * + ) fa—r are Lipschitzian maps of P into E,.

(3) If p& P, then fi(p), - - -, fa—i(p) form an orthonormal base of Nor (P, p).

(4) If pEP, then 1, is the (intrinsic) tangent space of P at p.

(5) If pEP and f;is differentiable at p, then F;(p) ENV(r,) and the bilinear
form corresponding to F;(p) is the second fundamental form of P at p associated
with the normal vectorfield f; [mapping (u, v) Ev, X1, onto df;j(u) @dg(v), where
g: P—E, by inclusion].

(6) C s a closed subset of E,, PCC.

(7) If pEP, then

n—k
S(p) = Exe N {z: I z| =1 and Zz,fj(p) € Nor(C, p)} .
=1
(8) If p&P and fi, - + +, fux are differentiable at p, then
n—k m
w) = [ [ S anp)] ams € Anniey
8(p)

j=1

form=0,1, .- k.
(9) Q is a bounded Borel subset of P.
(10) 0=r<reach(C, p) whenever pQ.
Under these conditions the following formula holds:

La({x: 8c(x) < 7 and £o(x) € Q))
= i ikt — k4 m)“lf trace[un(p) |dH*p.
m=0 Q

Proof. Since both members of the preceding equation are countably addi-
tive with respect to Q, the problem is local and one may assume, in view of

(2) and (3), that there exist Lipschitzian maps e, - - -+, e; of P into E, such
that if pEP, then e,(p), - - -, ex(p) form an orthonormal base for Tan(P, p).
Letting 6, - - -, 0 be the 1-forms of P such that

0ilfp=(dgl1'p).ei(ﬁ) forpEP,i=1,---,k,

one readily verifies that Lemma 5.2 is applicable; the factor (k—m) I"1G(p)*—m
may now be omitted because the bilinear form corresponding to G(p) is now
the first fundamental form of P [mapping (u, v) €7, X7, onto dg(x) ®@dg(v)].

5.4. DEFINITION. Suppose A C E, and 0<d4(p) < reach(4). Then
P={x:84(x) =5A(p)} is an n—1 dimensional submanifold of class 1 of E,,
with the Lipschitzian unit normal vectorfield (grad 8,4)|P, according to 4.8
(5) and (3). If 7, is the tangentspace of P at p and (grad 84) | P is differentiable
at p, then

Ea(p) € Ai(r,)
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is defined by the following condition: The bilinear form corresponding to
Ea(p) is the second fundamental form of P at p associated with (grad 8,) | P.

5.5. THEOREM. If A CE,, 0<s<reach(4) and
4, = {x:&A(x) =< s}, 4! = {x: dalx) = s}, P, = {x: Sa(x) = s},

then the following three statements hold:
(1) If 0=r<reach(4) —s and Q is a bounded Borel subset of P, then

L({%: 64,(2) < r and £4,(2) € Q})
= nZ—Zl rmti(m 4 1) !‘lftrace[EA(p)m]dH"‘lp.
Q

m=0

(2) If 07 <s and Q is a bounded Borel subset of P,, then
L,({x: 84,(%) < r and £x(2) € Q})
n—1
= >, rHi(m + 1) !‘1(-—1)"‘f trace[ Z4(p)m]|dH1p.
Q

m=0

(3) If 0=r<s and K 1s a bounded Borel subset of E,, then
La({2:64(%) < r and £4(x) € K}) = L[4, N £2(K)]
n—1
+ 2 (r — )™ (m + 1) !‘lf trace[ Z4(p)™]dH»1p.
=0 b Aatyule:o]
Proof of (1). Apply 5.3 with
P=P, k=n—1, fi=(gradds)|P,, Fi=Ea|P,y, C= A4,
S@) = {1},  un(p) = m1[Eu(p)]™.
Proof of (2). Apply 5.3 with
P=P, k=n—1, fi=(gradds)|P, Fi=Ea|P, C=4],
Sp) = {1},  um(p) = m7 [~ Ea(D)]"
Proof of (3). Observe that
L4 N (K)] = L[4, N £ (K)] = Lal(4, — 4) N £ (K)],

use 4.9 to verify that

{x: r <ds(x) < s and £4(x) € K}
= {x: da0(x) < s —r and £4(x) € P, N EZI(K)}

and apply (2) with 7 replaced by s—r.

5.6. TaEOREM. If A CE, and reach(4) >0, then there exist unique Radon
measures Yo, Y1, * * + , Yn over E, such that, for 0 Sr <reach(4),
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Ln({x:BA(x) = r and £s(x) € K}) = i ria(n — 1)Y(K)

=0
whenever K is a Borel subset of E,, and consequently

n

f (fof4)dL, = Z r"la(n — 1) f fay;
{ZZBA(J:)§r)

1=0
whenever f is a bounded real valued Baire function on E, with bounded support.

Proof. Clearly o, - - -, ¥, are uniquely determined as soon as the above
equations hold for #+1 numbers 7. On the other hand, if 0 <s<reach(4),
then measures ¢, suitable for 0 <7 <s may be defined by letting a(n —2){;(K)
be the coefficient of =% in 5.5 (3).

5.7. DErFiNITION. If A CE, and reach(4) >0, then the Radon measures
Yo, Y1, + + +, ¥a described in Theorem 5.6 are the curvature measures associated
with A. Clearly the supports of these measures are contained in 4.

Whenever ¥4(4), ¥1(4), + + +, ¥a(4) are meaningful, for instance in case
A is compact, these numbers are the total curvatures of A.

Hereafter the dependence on 4 will be made explicit by writing

®,(4, K) for ¢i(K),  2i(4) = ®:(4, A) for ¥i(4),
o4, f) = f fd®(A, -) for f fap:

whenever K is a Borel subset of E, and f is a Baire function on E,; further-
more |<I>,| (4, K) will be the total variation of ®;(4, -) over K, and |<I>,~| (4)
=|®:| (4, 4).

5.8. REMARK. If A CE,, reach(4) >0 and K is a bounded Borel subset of
E,, then

&,(4,K) = L(ANK), &4, K) = ®(4, K N Bdry 4) for i < n.

The first equation is evident from 5.6, the second from 5.5 (3).
It is clear that if M is a rigid motion of E,, then

tI),[M(A),f] = ‘I’,(A,fo M)

for =0, - - -, n and every Baire function f.
If the conditions of 5.5 hold, then

@:(Anf) = aln = iy = D1 [ f(p) trace[Za(p)—]aH"p

whenever 7=0, - - -, n—1 and f is a bounded Baire function on E, with
compact support. Also, in case 4 is compact,
‘o fn— ] a(n —j
®:i(4s) = Z( ]> N _—(—Q ®,(4) fori=0,:--,mn,
o\ — 1 a(n — 1)
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because if 0 =r <s—reach(4), then

> ria(n — )8i(A) = Lo({x: b4,(x) < r})

=0
= L,({x:84(x) S 7+ 5}) = 2 (r + )" Ta(n — 7)B;(4).
=0
5.9. THEOREM. Suppose €>0. If Ay, A2, A3, - - - and B are closed subsets
of E, such that reach(4x) =€ for k=1,2,3, - - - and
84,(x) — 05(x) uniformly for x € C as k— =

whenever C is a compact subset of E.,, then reach(B) Z e and for i=0,1, - - -, n
the sequence of Radon measures

cbi(Alr ')y ‘-'I%'(Ag, ')) ‘I’,‘(A:g, ')) te
converges weakly to the Radon measure ®,(B, ).

. Proof. Recalling 4.13, suppose f is a continuous real valued function on E,
with compact support S, and 0<r <e, n>0.
Let M=sup{|f(x)|:xES}, C={x:8s(x)<r}, choose a number { such
that 0 <{ <e—r and
Ln[égl(C) N {x:r —<éplx) <r+ 5‘}] < /M,

let D= CN{x: 8z(x) <r+¢}, and choose a positive integer K such that if
k=K, then

| 04, (%) — EB(x)l < ¢ for xEC, | £4,(x) — EB(x)l <r for x € D.

Let E={x:8p(x)<r}, Fi={x:04,(x)<r}, and note that ENEz*(S) CC. If
k=K, then

FiN £2y(S) = CNFu N E24(S) C DN £4,(S) C &5 (C),

C NEN £,(S) C DN £2y(S) C &5 (C),
CN[(F—E)U(E-F)] C{a:r—¢ <éplx) <r+¢},
LEnS) N [(Fr = CNE)U (CNE — F)]) < n/M,

<.

(fota)dLn — f (fo £a)dLn

F CNE

Since £4,(x)—£p(x) uniformly for x©CNE, one finds by first letting k— o
and then letting —0+ that

lim (fo&Ak)dLn=fcn (foEB)dL,.=f(fo£B)dL,.

k— oo Fi

and consequently
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lim Y r—ia(n — i)®:(Ar, f) = 2 ria(n — i)®:i(B, f).
koo 0 i=0

Inasmuch as this equation holds for n+1 values of 7, it follows that

lim ‘I’,'(Ak,f) = ‘I’i(B,f) fori = 0, 1, RPN (X
k— o
5.10. REMARK. One sees from 5.9 and 4.14 that if e>0and =0, - - -, #,

then the function on
{A4:0 A C E, and reach(4) = ¢}

mapping A onto ®,(4, -) is continuous, with respect to the topologies of the
Hausdorff metric and of weak convergence. While the function mapping 4

onto |<I>,-| (4, ) is not continuous, it is true that if K is a compact subset of
E,, then
sup { | €I>,~| (4): A C K and reach(4) = ¢} < o

because weak convergence of measures implies boundedness of their total
variations.

If ACE,, reach(4)>0 and 4,={x: 84(x) <s} for s>0, then &;(4,, -)
converges weakly to ®;(4, +) as s—0+4. Moreover, if K isa compact subset of
E, and 0<t<reach(4), then

sup { | ®i| (4s, K):0 <5 St} < oo,

5.11. LEMMA. In addition to the hypotheses of 5.2 suppose:

(10) k=n—2.

(11) p and v are Lipschitzian maps of P into E,.

(12) If pEP, then u(p) and v(p) are linearly independent unit vectors and
w(p) + v(p) w(p) — v(p)

fi(p) = m) fa(p) = |

w@) — )|

(13) If pEQ, then Nor [C, g(p)] is the closed convex cone gemerated by

u(p) and v(p).
(14) If p&EP and p, v are differentiable at p, then

M) = 3 [(du] ) @ es(p)] ® (6:] ) € Av(ry),

N(@p) = 2 [(dv] ) @ ei(p)] ® (6:] rp) € Ar3(ry).

15) If a>0,5>0, m=0, - - - , n—2 and j=0, - - -, m, then
o(a,b) = ExN\ {z: | 2| =1 and z:/a 2 | 2/b] },

z 2\ (2 29\’
Ansa,9) = [om = 3 [ G+% G-%wm
a(a,b) \ @ b a b
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Under these conditions the following three statements hold:
For each pEQ where u and v are differentiable, and for m=0, - - - , n—2,

wn(p) = 3 Amil | 1®) +9) |, | 6(d) — ()| 1M (p)iN (5.

=0

For i=0, - - -, n—2,
&C, (0] = aln — iy(n — ) f traceli G DI,

For i=n—1 and n, ®;[C, g(Q)]=0.

Proof. First suppose pEQ, a= lp,(p) +v(p)|, b= [,u.(p) —v(p)!. Note that
if 2EE,, then
21

21 22 22
i) + ) = (24 2)utp + (= 7)o
a b a b
and that z&S(p) if and only if lzl =1 and the above coefficients of u(p) and
v(p) are non-negative. Accordingly S(p) =a(a, b). In case p and » are differ-
entiable at p, one also finds that

Fi(p) = [M(p) + N(p)]/a,  Falp) = [M(p) — N(p)]/b

and consequently
21 22 21 22
z21F1(p) + 22Fa(p) = (;‘ + 7) M(p) + (: — ;) N(p)

whenever z& E,. Therefore the first statement follows from 5.2 (8) and the

binomial theorem.
The second and third statements may be obtained from the conclusion of

5.2 by computing the coefficient of r*%,

5.12. COROLLARY. Suppose:

(1) Q s an n—2 rectifiable Borel subset of E,.

(2) g, m, v are Lipschitzian maps of Q into E,, g is univalent, g~ is Lip-
schitzian.

(3) 2(Q) CCCE,, reach(C)>0.

(4) If pEQ, then u(p) and v(p) are linearly independent unit vectors and
Nor [C, g(p)] is the closed convex cone generated by u(p) and v(p).

(5) 1 is a common Lipschitzian constant for g, u, v.

(6) Fori=0,:::,n—2

di = a(n — iy~Yn — i)~ (" )2"‘2_‘(% ~ 2o,

Under these conditions it is true that
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| 2] [C, (0] = 4 f Je@ @) 17+ [ up) = (o) [PIamp

for1=0, - - -, n—2, and ICI%[ [C, 2(Q)]=0 for i=n—1, n.

Proof. In view of a standard decomposition one need only consider the
case in which H*2?(Q) =0 and the case in which Q is contained in an 7 —2
dimensional submanifold P of class 1 of E,.

In the first case H*(Q X E;) =0, according to [F6, 4.2], and the Lipschitz-
ian function ¥, such that

¥(p, w) = g(p) + win(p) + ww(p) for (p, w) € Q X E,

maps Q X E, onto a set whose L, measure is zero and which contains
{x:£c(x) Eg(Q)}. Therefore |®.] [C, 2(@)]=0 for i=0,1, - - -, n.
In the second case Lemma 5.11 is applicable, with

Ams(a, 8) < [(m — DY@ + b=,
| M) < (n—2m, | NB)| S (n— 2, |G()| £ (n — 2,

n—2—1i

-2
|6 s | = (77 Yw = 20) 2 [| () + v(p) |
1

L) =y |demse (P70l = 2paleens
-2 J
= ("7 7)o = Dalrrr L) + 9 [+ | ) — i) ]

5.13. LemMA. If A CEn, reach(4) >0, f is a bounded Baire function on E,,
with compact support, and u is a bounded Baire function on {t:t=0} whose
support is contained in {t: t<reach(4)}, then

f (fo £a) (40 64)dLn

= a4, 1)-u(0) + 2 %4, Natm = om =) [ r-i-tuo ar.
=0
Proof. Since the class of all functions % for which this equation holds is
closed to subtraction, addition, scalar multiplication and bounded conver-
gence, it need be verified only for the special case when « is the characteristic
function of {¢:0<t<r}, where 0<r<reach(4); but then it reduces to the
definition of the curvature measures.

5.14. THEOREM. For any closed sets A CE,, and B CE, the following state-
ments hold:

(1) daxa(x, ¥) = [84(x)2+85(y)2]!/2 whenever (x, y) E EnXEn,.

(2) Unp(4 XB)=Unp(4) XUnp(B) and
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Eaxn(x, ) = (§a(%), £8(y)) whenever (x,y) € Unp(4 X B).

(3) reach[AXB, (a, b)]=inf{reach(4, a), reach(B, b)} whenever
(a, ))€A XB.
(4) If reach(4) >0, reach(B) >0 and k=0, - - -, n+m, then

q)k(A X B) ) = Z ‘I—";(A, ) ® q)i(B, ')'

+i=k

Proof. The first three statements are easily verified.
To prove (4) suppose

0<r< inf{reach(A), reach(B)},

f and g are continuous functions on E, and E, with compact support, and
h(x, y) =f(x)g(y) for (x, ¥) EE, X E,. Using the definition of ®,(4 X B, k), the
Fubini Theorem, the definition of ®;(B, g), and Lemma 5.13, one obtains

m+n

> ymtnko(m + n — k)®(A X B, k)

k=0

[ (0 baxa)d(Ln ® L)
{@.0): syp(zu)ar)

[ (ot [ (80£8)(5) dLnydLn

{2: BA(:)sr) {y: BB(y)Zer—BA(z)Zl

— — > . B
ga(n N ,g)f{

LSRN (z)sr}

(f 0 £4) (@) [r2 — 84(x)2] D124 L

N Zi: aln = 1) 2(B, 8)(‘1>m(A,f)r""' +"§, (m — D)a(m — )B4, )

=0

r

,f tm—i—l(r2 — t2)(n—i)/2d[>
0
1

= i r"ia(n — §)®n(4, /)®;(B, g) +mi i JrT——

=0 j=0

flu"‘_"_l(l — u?) =D 12dya(n — falm — i)(m — i)®,(4, /)®;(B, g.

Now in the special case when 4 and B consist of single points of E, and
E,, and when f and g are the characteristic functions of 4 and B, the preced-
ing formula reduces to

1

rrraa(p + q) = e f w11 — u) P duc(p)a(q)p.

0
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Returning to the general case one may use this equation with p=m—1
and g=n—j to conclude that

m+n
> rmnka(m + n — E)&(A X B, h)
k=0
=2 2 rivivia(m + n — i — f)®(4, [)®(B, g).
=0 j=0

5.15. REMARK. Applying Theorem 5.14 to the special case in which B
consists of a single point b, one finds that

&4 X {b), X X (b)) = @4(4, X) fork =0, -, m,
(A X {8}, XX {B))=0 fork=m+1,--,m+n,

whenever X is a bounded Borel subset of E,.. Accordingly the curvature meas-
ures behave naturally under an isometric injection of one Euclidean space into
another.

5.16. THEOREM. Suppose A and B are nonempty closed subsets of E, and
s = inf{reach(A), reach(B), reach(4 U B)}.

Then the following statements hold:
(1) If xEE.,, then S4,5(x) =inf{84(x), 85(x)},

8ans(x) Z sup{ds(), 85(x)}.
(2) If x€Unp(A\UB) and 64(x) <8p(x), then
x € Unp(4) and £4(x) = Eaup(x).
If x&€Unp(A\UB) and 6p(x) <64 (x), then
* & Unp(B) and Ep(x) = E4un(x).
(3) If x€Unp(A) and 8p(x) £ 84(x) <reach(4\UB), then
* € Unp(A N B) and E£4(x) = tanp(®).
If x&€Unp(B) and 64(x) <85(x) <reach(4\UB), then
* € Unp(4A N B) and Ep(x) = £ann(x).
(4) If sup{d4(x), da(x) } <s, then
34ns(2) = sup {34(x),85)}, & € Unp(4 N B),
{EA(x), t(2)} = {£aun(), tans(x)}.

(5) reach(ANB)=s.
(6) If s>0and 1=0, - - -, n, then

<I>,~(A, ') + CI%'(B, ') = QI(A v B, ') + Qt(A N B, ')

o g = e e e ey
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Proof. Note that (1), (2) are obvious, and that (4), (5) are trivial conse-

quences of (2), (3).
In order to prove (3) one must show that if

x € Unp(4), a = ta(x),  8p(x) < 8a() < reach(4 U B),
then a €B. Observe that
tale+tx—a) =a and ¢+ s —a) € Int Unp(4\U B) for0=¢=1.
The assumption that a B would imply that
dale+t(x —a)] <édpla+t(x—a)]  forsmallz>0,
0 < 7 = sup{t: tausle + t(x — @)] = o},

and it would follow from 4.8 (6) that 7> 1, hence £4y5(x) =a; but then aEB,

because £4yr(x) =£p(x) according to (2).
Next, to verify (6), suppose f is a bounded Baire function on E, with

bounded support, 0 <7 <s and
A, = {z:84(x) S 7}, B.= {x:88(x) < 7).
Using (1), (4), (2) one obtains
A,\U B, = {x: 84up(x) < r}, A, N B, = {x: danp(x) < r},

ﬁwww—oMMerM&m
- f (fot)dLo+ [ (fots)dLa

= (fo £4)dLa + (fo £s)dLa + [(fot) + (f 0 £p)]dLa

A,—B, B,—A4, 4,NB,

= f (fotaus)dLn + (fo ¢aus)dLa
A,—B,

B,—A,

+ [(f 0 £4uB) + (f0 £ans)]dLa

4,NB,

= (fotaus)dL. + (fo £ang)dLa

4,UB, 4,NB,

_ 3 ria(n — i)[®4 U B, ) + &4 N B, N].

=0

5.17. REMARK. The additivity property expressed by 5.16 (6) is a sharper

version of certain properties studied by Blaschke [BL, §43] and Hadwiger
[H, 6.12], who used these properties together with invariance under rigid
motions and continuity (compare 5.8 and 5.9) to characterize Minkowski’s

Quermassintegrale
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Wi(4) = ali) (’:)_lén_iu)

for compact convex sets 4. It would be very interesting to know whether
there exists a similar characterization of the curvature measures ®;(4, -) for
all sets A such that reach(4) >0. ‘

5.18. REMARK. The proof of 5.19 will make use of the following classical
proposition:

Suppose V is a bounded subregion of E,, the boundary of V is the union
of finitely many disjoint #—1 dimensional submanifolds of class 1 of E,, f is
a real valued continuously differentiable function on a neighborhood of the
closure of V, and at each point of the boundary of V the exterior normal of V'
and the gradient of f have a positive inner product. Then the Euler-Poincaré
characteristic of the closure of V equals the degree of the map

(grad f) | Clos V: (Clos V, Bdry V) — (Ea, En — {0}).

Furthermore, if Wi, - - -, W} are the components of Bdry V, then the above
degree equals the sum of the degrees of the maps

(grad f) | Wa: Wi — E, — {0}

corresponding to =1, - - -, k.

Replacing f by a nearby function of class 2 and with nondegenerate criti-
cal points, one may derive this proposition from the Morse theory (see [M,
Chapter VI, Theorem 1.2, p. 145]).

5.19. THEOREM. If A CE,, reach(4)>0 and A is compact, then ®o(A4)
equals the Euler-Poincaré characteristic of A.

Proof. Suppose 0<s<reach(4). Since ®¢(4,) =Po(4), according to 5.8,
and since 4 is a deformation retract of 4,, it is sufficient to show that ®$,(4,)
equals the Euler-Poincaré characteristic of 4,.

Applying 5.18 with f=(84)? and observing that

grad 84(x) = 2s grad 5,4(x) for x € P,,

one sees that the Euler-Poincaré characteristic of 4, equals the sum of the
degrees with which

(grad 84) | Po: P, =V = {v: | o] = 1}

maps the components of P, into V; furthermore this sum may be computed
by integrating the Jacobian of the above map over P, with respect to H*™!,
and dividing by na(n).

Consider a point p& P, where (grad d,4) I P, is differentiable. If one identi-
fies the tangentspace 7, of P, at p with the “parallel” tangentspace of V at
grad 64(p), the differential of (grad BA)|P, at p becomes the endomorphism
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of 7, corresponding to the bilinear form E4(p), and using 2.12 (5) one finds
that the Jacobian determinant equals

trace[(n — 1) 17154 (p)*1].

Accordingly the Euler-Poincaré characteristic of 4, equals

[na(n)]? fP trace[(n — 1)I-1E4(p)"1|dH*p

= a(n)‘lnl—ljv trace[E4(p)"]dH p = Bo(A,),
P,

by virtue of 5.8, as was to be shown.
5.20. REMARK. Suppose Fi, - - -, F; are elements of an associative and

commutative finite dimensional algebra over the reals, and let

l m
n(m) = f (Eszj) dH'3
EiN{z: |z|=1} \ j=1

for m=0, 1, 2, - - - . Clearly n(m) =0 in case m is odd, and
2(0) = H-Y(EN {z: | 2| = 1}) = la(D).
If m is a positive even integer, then
1 3 m—1 (J 2
= l —_— e e ——— F. 2 .
wm) =l 7 l+m—2(,~‘:‘:(’)>

In fact, Green’s formula implies that

l l m—1
n(m) = F; f (Z Zij) 2,dH" g
i=1 EN{z. |z]=1} \ j=1

1

l m—2
= > F; f (m — 1) ( > szj) FdL;z
=1 EN(z: |z1<1) j=1

N fo 1 f . (i z,-F,')m_gdH"lzdr

=1 j=1

l 1
— (m— 1) 3 (F)? f ol (i — 2)dy
i=1 0
l

= l+—m—_5 E (Fa)*n(m — 2).

5.21. ReMARK. Consider the special case of 5.3 where C is a & dimensional
submanifold of class 2 of E,, and P is open relative to C. If p& P, then

S(p) = Eax N {z: | 2] =1},

m—1
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hence #,(p) may be computed by means of 5.20. Applying the formula
84(C, Q) = aln — i)'(n — i)~ f trace[us_i(p) |dHep
Q

for 2=0, 1, - - -, k, one finds that
&(C, Q) = H*Q), ®;(C, Q) = 0in case k — ¢ is odd,

and that, if £—7 is even and positive, then

®;(C, Q) = a(n — i)"Y n — 3)~1 fQ trace {(k — ) la(n — k) (n — k)

1 3 k—i—1/k (k=) /2
. Fi(p)]? dH*
n—kn—FkF+2 n—i—Z(E[ (p)]> } ?

= eoor((h - /2007 | trace (E =or) (Hm} dHp,

=0

Accordingly the curvature measures ®;(C, -) are the indefinite integrals,
with respect to H*, of certain scalars algebraically associated with the tensor

S [F)] € Ay,

=1

Furthermore this tensor may be identified, except for a factor —1/2, with
the classical covariant Riemannian curvature tensor of C. In fact, define
e, ++,e,and by, - - -, O as in the proof of 5.3 and let

erti = fi forj=1,---,n—k
Using the familiar notation of Elie Cartan (see [CA; C3]) one obtains

df; @ e; = depy; @ € = Wiyjs forj=1,---,n—kands=1,---,k,

k k
Fi=> (dfi@e)®0,= > s ®0, forj=1,--+,n—k

8=l 8=1
n—k n—k k &
D2(FN = 20202 (@rrie A\ wrsne) ® (6, A 62)
j=1 j=1 s=1 t=1
Bk / on—k
=2 ( 2 Wktie A\ wk+j,c> ® (6. A\ 0,)
8=1 t=1 j=1
E ok
=22 (—20) @0 Ab)
8=1 t=1

k k k Kk 1

=ZZZZ—7&MMAM®@AM

8=1 t=1 u=1 v=1
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Computing the trace of the (k—1)/2th power of this tensor one arrives at
2G=912[(k—14)/2]! times the scalar Hj_; introduced in [WE]. (Note: Weyl's
RY is the negative of Cartan’s Ry,1,4,0). In case k is even and =0 the above
formula for ®,(C) reduces, in view of 5.19, to the Gauss-Bonnet Theorem of
[A; AW; C1; FE1].

5.22. REMARK. Assuming A CE, and reach(4) >0, let

%uw=gﬁwwdmuméﬁw

whenever :=0, - - -, # and f is a continuous real valued function on E, with
compact support; from 5.5 one sees that for ¢ <# this limit equals

+ ]:)(_S)m+l—n+i

trace[ Za(p)™] | dH 1p.

n—1

> wa—nw(f

m=n—1—1

Mn—@*J;Uo&XQ

Evidently ¥.(4, f) = |®:| (4, /).
Under the conditions of 5.21 one finds that

¥, (C,Q) =0 incase 7>k,
and that if 2=k, then
Vi(C, Q) = a(n — i)~} (n — )7 (k — I

n—k k—1
f f trace([ > sz,-(p):I )
QY E,_;N{z: |z]=1} j=1

The total absolute curvature ¥o(C, C) has been studied in [C3] and [CL],
and previously for =1 in the theory of knots (see [MI; FE2]).

6. The principal kinematic formula. Within the following proof of this
integralgeometric formula, concerning two subsets 4 and B of E, with posi-
tive reach, one may distinguish three component arguments: First, struc-
tural considerations (6.1, 6.2, 6.3, and Parts 1, 2, 3, 10, 11, 18 of 6.11) designed
to establish qualitative properties of the intersections of A with the isometric
images of B. Second, a most delicate convergence proof (6.3, 6.5, 6.10, and
Parts 3, 4, 5, 6, 7, 8, 16 of 6.11) showing that in computing the kinematic
integral one may approximate 4 and B by

4, = {x:BA(x) =< r} and B, = {x:&B(x) = r}.

Third, computations (6.6, 6.7, 6.8, 6.9, and Parts 9, 12, 13, 14, 15, 17, 19)
dealing mainly with 4, and B,. In these arguments the theory of Hausdorff
measure and rectifiability combines with the results of §§4 and 5 to furnish the
foundation, the integral formula 3.1 reduces the global analytic problem to
a local algebraic problem, and the tensor algebra A **(E) solves the local prob-
lem.

dH1zdH*p.
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6.1. LEMMA. Suppose f: En—E, is a Lipschitzian map, SC {x: f(x) =0} ,
k 1s an integer, and for each a €S there exists a k dimensional plane P such that
aEP and f| P has a univalent differential at a.

Then S is countably m —k rectifiable.

Proof. In view of [F4, 4.3] it is sufficient to show that if a and P are as
stated above, then there exist positive numbers 7 and 5 such that

SN {x: Ix—a| < r and |x— a| > (1 4+ 72)2%5(x)}

is vacuous.
Let M be a Lipschitz constant for f, choose positive numbers 7 and s
such that

| 12| gslp—al whenever p € P and |p—a| <7,
and take n=M/s. If xES, Ix—al <r and p=£p(x), then
lx—P|=5P(x)’ |x—a|2=|x—p|2+|p—a|2,
slp—e| = 11| = /@) —1@)| = M|x— ],
lp—elrsnle—pl, Ja-esa+m|z—s
6.2. LEMMA. Suppose
X and Y are separable Riemannian manifolds of class 1,
dim X = p, dim ¥ = g,
f:X X Y — E, is a Lipschitzian map,

S C {(x, 9):f(x, %) =0}, kisan integer,
and for each (a, b) ES the map

Ja: Y > Eay  fa(y) = f(a,y) foryE Y,

1s differentiable at b and df, maps the tangent space of Y at b onto a k dimensional
subspace of E,.
Then S is countably p+q—Fk rectifiable.

Proof. Using coordinate systems, it is easy to reduce the problem to the
special case in which X =FE, and Y=E,.

For each (g, b) €S there exists a k dimensional subspace V of the tangent
space of E, at b such that df, is univalent on V, and to V corresponds in obvi-
ous fashion a plane P CE,XE, such that (a, b))EP and f I P has a univalent
differential at (a, b).

6.3. LEMMA. If X is a separable p dimensional Riemannian manifold of
class 1 and
p:X—>E, vX->EN{uw|u =1}
are Lipschitzian maps, then

(X X Go) N { (%, B): u(x) + R[»(x)] = 0}
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is countably p+(n—1)(n—2)/2 rectifiable.
Proof. The map f: X XG,—E.,,
f(x, R) = u(x) + Rlv»(x)] for (x, ) € X X G,
is Lipschitzian. Furthermore for each x€X the map
fz: Go — E,, f+(R) = f(x, R) for R € G,

is analytic and df, maps the tangent space of G, at any REG, onto an n—1
dimensional subspace of E,; in fact f, is obtained by translation through the
constant vector p(x) from a classical fibre map of G, onto the n—1 sphere.
Accordingly Lemma 6.2 applies, with g=n(n—1)/2 and k=n—1.

6.4. LEMMA. If vEE,, wEE,, |v]| =|w| =1, m<n—1, then
fG | v+ R(w) | "d¢.R < .
Proof. Letting S=E,N{x: |x| =1} one finds (see [F4, 5.5]) that
a=s) v+ R maguk = fs| v+ 2 |mdH s,

Furthermore let C(r) =SN{x: |v+x| =r} for >0, and observe that there
exists an M < « such that

H*1[C(r)] £ Mr! whenever 7 > 0.
Consequently

0
f | o+ x| mdHx = | v+ #|-"dH* 1%
s i=0 J c@—H—c@™)

< Z 2im 21— (n—1) = Jon—1 Z (2mmH)i < oo,

1=0 =0

6.5. REMARK. Clearly the integral considered in Lemma 6.4 is independ-
ent of v and w; denote it by I,.

In case m is an integer it follows from the binomial theorem and Halder’s
inequality, with exponents m/j and m/(m —j), that

J o+ k@ + |0 - k@) [1as.R

k4 m
< E( ) (L) i!m(L ) =D Im = m[,
J

=0

Similarly one sees that if A,,; is defined as in 5.11 (15), then the integral
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=fG Ans| v+ R@) |, |v— R@)|]-| v A Rw) | douR

is finite and independent of v and w.

6.6. LEmmA. If ACE,, BCE,, reach(4) >0, reach(B) >0, reach(4NB)
>0 and C is a bounded Borel set contained in the interior of B, then

tI>.-(Af\B,C)=<I>.-(A,C) f01"i=0, 1,---,n

Proof. In case C is a compact subset of ANInt(B), 8a4q5(x) =04(x) and
£4n8(x) =£4(x) whenever x is sufficiently close to C.

6.7. LEMMA. Suppose:

(1) V and W are vector subspaces of E,.

(2) k=dim V+dim W—-=>0.

(3) Q 1s the space of all isometries w such that the domain and the range of w
are k dimensional vector subspaces of V and W respectively.

(4) G, H are the orthogonal groups of V, W.

(5) m, v are the Haar measures of G, H such that u(G) =v(H) =1.

(6) U is a k dimensional real vector space.

(1) e: U-V and f: U->W are isometric embeddings.

(8) V' and W' are the orthogonal complements of V and W in E,.

(9) P is the orthogonal projection of E, onto V'.

(10) n is a real valued ¢, summable function such that, for REG,, 1(R)
depends only on P o RI w'.

(11) ¢ 4s a real valued continuous function on Q.

Then

f 2(R)-¢[R-1| V. N R(W)]d¢.R

Gn

- f nddn: [ t(hofoetog i ® »(e, b.
G GxH

Proof. The group G X H operates transitively on € according to the rule
(g, )0 = howo g! forg€eG rEH o0& Q.

Since f o e 1&Q, a Haar measure ¥ over (, invariant under the operation of
G X H and with ¢(Q) =1, is given by the formula

v@) = §(hofoetog i ®v)(g h)
GxH
for every continuous real valued function { on Q.
With gE&G associate A(g) EG. so that A(g)[ V=g and A(g)[ V'’ is the
identity map of V’.
With k€ H associate B(k) EG, so that B(k)| W=h and B(h)| W’ is the




1959] CURVATURE MEASURES 471
identity map of W’.
Then GX H operates on G, according to the rule

(g, B)R= A(g) oRo B(h)™! forg € G, h & H, R € G,

the measure ¢,, the function 5 and the open set
M = G, N {R: dim[V N\ R(W)] = &}
are invariant under the action of GXH, and the continuous map
wM—Q  wR) =R [VNRW)] forRE M,

commutes with the operations of GXH on M and Q. Therefore another
Haar measure ¥ over ©, invariant under the operation of GX H, is given by
the formula

W) = an-(rou>d¢,,

for every continuous real valued function { on Q. Using the uniqueness of
Haar measure and the fact that ¢,(G,— M) =0 one concludes that

¥ = w()y = f ndbud.

6.8. LEMMA. If
U, V, W are finite dimensional real vector spaces with inner products,
G, H are the orthogonal groups of V, W,
u, v are the Haar measures of G, H such that u(G)=v(H) =1,
e: UV and f: U—-W are isometric embeddings,
M e A 2(V), NE Avs(W), p + ¢ < dim U,
then

f trace[(g o e)*(M)-(hof)*(N)]d(x ® »)(g, k)
OxH

. : -1 H -1
_ (p + q) (dlmU) (dlm V) (dlmW> trace(M)trace(N).
q ?+q ? g

Proof. Denote the above integral by F(M, N) and observe that F is a
bilinear function invariant under the endomorphisms of A?-»(V)XA2:¢(W)
induced by GXH. Applying 2.13 twice one infers that there exists a real
number ¢ such that

F(M, N) = ¢ trace(M)trace(N)  for M € A»?»(V), N & Aeo(W).
To determine ¢, choose

Iv € Avy (D), Iy € Ay, Iy € Nr(w)
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so that the corresponding bilinear forms are the inner products of U, V, W
and let

= (Iy)», N = (Iw)-
Then

(goe)*(M)-(hof)* (N) = (Iy)+e  for (g, h) €G X H,
and it follows from 2.12 (4), applied with 2=0 and M =1, that
dim(U)! _ dim(V)! dim(W)!

[aim() — @+ 91!~ * [dim(¥) — ]! [dim(W) — ]!

6.9. REMARK. Suppose x and ¢ are bounded Baire functions on E, and
u is a Radon measure over E,.
If ¥ and either x or u have bounded supports, then

f ) f % 0 R0 T_)dud(L, ® )z R)
E XGy

f f x(x) np [R-(x — 2)]dL,2duxdd.R
¢, J &,

= f . f EnX(x) Ent//(y)dL,.ydpxdmR = f xdu- f ydL,.

Similarly, if x and either ¥ or p have bounded supports, then

fE,.xG,.f (xoT:0R) ¥dud(L, ® ¢.)(2, R) = f xdL,- f\bdp.

If x has bounded support and S is a bounded Borel subset of E,, one may
apply the first formula with ¢ replaced by the product of ¥ and the character-
istic function of S, to obtain

f f -0 R0 T_)dud(Ly ® $,)(z, R) = f xdu- f vdL,.
EnxGy ) (T, 0 B)(S) s

If x and u have bounded support and S is any Borel subset of E,, one may
apply the second formula with x replaced by the product of x and the char-
acteristic function of S, to obtain

[ (x0 7.0 Ry 4dud(n ® 66, B) = [ xaLu: [ v
EpXGp vV (R0 T_4)(8) s

6.10. LEMMA. If ACE,, BCE.,, A is closed, B is compact and
C(t) = {x: 64(x) = ¢ and 85(x) < t}
for t>0, then d¢(y(x)—04np(x) uniformly for x€E, as t—0+.

B —
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Proof. If >0, then ANBCC(¢), daq5(x) =8¢y (x) for xEE,.

Suppose €>0, let D= {x: §4n5(x) <e}, and observe that the sets C(t) —D
are compact and their intersection is empty. It follows that if ¢ is sufficiently
small, then C(t) CD, hence

dey(®) = op(x) = danp(x) — e for x € E,.
6.11. THEOREM. Suppose
A C E,, reach (4) > 0, B C E,, reach (B) > 0, B is compact

and 1=0,1, - - -, n. Then:
(1) For L,Q®¢, almost all (3, R) in E,XGn,

reach[4 N (T.0 R)(B)] > 0.

(2) If x, ¥ are bounded Baire functions on E, and x has compact support,
then

[ al4n@or®), x@oR 0 I-)dL. ® 8 B)
E,XGy
= Z 'Y(”’: k’ l)CIDk(A, X)q)l(B) 'I/)

k+4l=n+1
(3) If K is a compact subset of E,, then

[ 1@l 4N (@0 R®), Kla © 606 B) < =.
EnXG,

(4) If A is compact, then

f B4 N (T,o B)IL. ® 65 R) = X v(n, b, )&i(A):(B).
E,XGp

k+l=n+1

Proof. For >0 let
A, = {x: 84(x) < 7}, B, = {y: 85(y) < r},
vV, = {x: 34(36) = 1‘}, W, = {y: 6B(y) = 7’}.

Choose s and p so that 0 <s<p<inf {reach(A), reach(B) } .
For t=0 let Z, be the subset of V,XW,XG, consisting of those points

(x, v, R) for which
| grad 64(x) + R[grad 6s(y)]| < ¢ or | grad sa(x) — R[grad 8z(»)]| = .
For =0 and REG, let {,,z: V. XW,—E,,

s — —r r
EB(}’)‘F—"}’]-
s s

r r s
£4(x) -I-—x—Rl:
s s

g'r,R(x’ y) =

For r=0let ¢,: V. X W XGr—E, XGn,

Pk
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¢r(2, 3, R) = (¢r.z(, 9), R).
In case i<n—2 define d; as in 5.12 (6) with
1 =sup {p(p — )74 [1 + p(p — 5)~"]s7}
and let
u(x, 9, R) = di(| grad 64(x) + Rlgrad 85(y)] |-
+ | grad 84(») — Rlgrad 85(y)] |~

for (x, ¥, R)EV, X W, XG,; in case i>n—2 let u(x, y, R) =0.

Throughout the following Parts 1 to 7 let K be any compact subset of E, and
let U= {x: 8x(x) <3p+diam(B)}NV..

PARrT 1. Z¢ is countably (n+2)(n—1)/2 rectifiable, and

(Ln @ ¢u)[6+(Z0)] =0 forr = 0.
Proof. Applying 6.3 with X =V, XW,, p=2(n—1),
u(x, y) = grad d4(x),  »(x,v) = £ grad dz(y) for(x,y) € V. X W,,
one finds that Z, is countably k rectifiable, where
=2 =14+ m—-1Dn-—-2)/2=mn+ 2)(xn —1)/2.
Since ¢, is Lipschitzian, by 4.8 (8), it follows that
B*[1(Z0)] = 0.

Furthermore ¢, is proportional to the #(nz —1)/2 dimensional Hausdorff meas-
ure over G,, hence L,®4¢, is proportional to the

nt+nn—10/2=n+m-1)+n—-—1)n—-2)/2=F+1

dimensional Hausdorff measure over E, XG,.
PartT 2. If 0<r<p, (3, R)EE, XG, and

S—=7r

g(,9) = zA<x>+{x for (x, %) € trela},

s
then g h{2})=V.N\(T.0 R)(W,), g is univalent and Lipschitzian with
Lipschitz constant p/(p—s), and g~ is Lipschitzian.

If A,N\(T, 0 R)(B,) meets K, then {;3{z} CUXW,.
Proof. The first statement follows from 4.8 (13) and (8), and the fact that,
for c€V.N\(T, 0 R)(W,),

r —

r

() = (' - % (o) + % 6 " g [RYc — 2)] + % R — z)) .

To prove the second statement, observe that if

Tve er -y
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pEKN AN (T.oR)(B) and (x,9) € trrls),
then
(@) < [p—=| = |p—g@n| + |ay) — 5l
< diam(B,) + |7 — s| < diam(B) + 3p.
PART 3. If 0<r<p, t=0 and (3, R) S (E.XGr) —{:(Z0), then
reach[4, N (T.0 R)(B,)] > (p — n)t/4,
V.N\(T, 0 R)(W,) is an n—2 dimensional submanifold of class 1 of E,, and
| @] [4. N (T.0 R)(B,), KNV, N (T.0 R)(W)]
= f u(x, y, R)AH*(x, ).
WUxWs) N, g2}
Proof. Observe that
(T.0 R)(B,) = {x: Gso R0 T_,)(x) < r},
grad(dpo R0 T_;) = Ro(gradég) o R0 T,

and that if c€ V,"\(T, 0 R)(W,), (x, ¥)E{alz}, c=g(x, y), where g is the
function defined in Part 2, then

© grad 84(c) = grad 8a(x),  grad(éz 0 R1o T_,)(c) = R[grad EOIR

hence |grad 84(c) +grad(éz o R™1o T-,) ()| >t
Now if c€A4,MN(T. o R)(B,) and

v & Nor(4,, o), w € Nor[(T, 0 R)(B,), cl, I vl >0, I w| > 0,
then ¢c€ V,N\(T, 0 R)(W,) and
v = | ~v| grad 84(c), w= | wl grad(6g 0 R0 T_,)(¢),

| o+ w| t

——— > R

lo + || = 2
because on the line segment joining two unit vectors the midpoint is closest
to the origin. Since

reach(4,) > p—r,  reach[(T.oR)(B)] >p —7
according to 4.9, it follows from 4.10 that
reach[4, N (T.0 R)(B)] > (t/2)(p — 7)/2.

It is now also clear that V,N\(T. o R)(W,) is an n—2 dimensional com-
pact submanifold of class 1 of E,. Since g™! is Lipschitzian, {7, Hsz} is n—2
rectifiable, and 5.12 may be applied with
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Q=trlz}, C= A4, (T.0R)(B),
u(x, y) = grad d4(x),  »(x, y) = R[grad 8s(y)]  for (x, ) € Q.

Finally, reference to the last statement of Part 2 completes the proof of
Part 3.
PART 4. If S is a Borel subset of E,XG, and r=0, then

) W d(H ® H™1 ® ¢,)
(UXW xGn) N1 (8)
-[f u(x, 3, RYAH™*(x, )d(Ly ® $)(z, R).
8 wxw)Ng, gz

Proof. Applying Theorem 3.1 with

X=V.XW:XGny, Y=E,XG [=¢,

g(x, v, R) = u(x,y, R) for (x,y,R) € (U X W, X G,) N o),

g(®, 9, R) = 0 for (2,9, R) € (Vo X Wy X Ga) — (U X W, X G) N & (S);
m=2n—1)+nn—1)/2, k=n+nln—1)/2, m—k=mn—2,

one obtains

f w(z, 9, R)JtA(%, 9, R)AH(x, 3, R)
(UXW XGp)Ngr (8)

-[ [ u(x, y, QOAH™(, 3, Q)dH¥(s, R).
8 (UXW %G NE (2, R))
Furthermore, if (2, R) €EE,XG,, then

(UXW,XG)N ¢ (@R} = {9, R): (5,9) € (UX W) N ¢rris})

and the function mapping (x, y) onto (x, ¥, R) is an isometry, hence the inside
integral equals

f w(z, y, R)AH™(x, 3).
WUxwHNg, g~z

Finally let ¢=H"»V/%(G,) and observe that

H»=DI2 agrees with q¢, over G,,
H™ agrees with H*1 @ H* ! ® ¢¢, over U X W, X G,
HF agrees with L, ® ¢¢, over E, X G..

PARrT 5. If 0<r<p and S is a Borel subset of E,XGn, then

e |
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f | & [4, N (T2 0 R)(B.), K]d(La ® ¢:)(z, R)
S

< f Wl d(H= @ H1 @ ¢,)
(

UXW XGn)N$ ()

+ [ & (4n, K) + | ®:| (B)](Ln ® $2)(S).

Proof. One sees from Part 1, 3 and Lemma 6.6 that, for L, ®¢, almost all
(3, R) in E, XG,,

| | [4, N (T.0 R)(By), K]
< | & [4,N (T.0R)(B), KN\ V. N (T:0 R)(W,)]
+ | ®:| [4. N (T.0 R)(B,), KN 4, — (T, 0 R)(W.)]
+ | ®:| [4. N (T.0 R)(B,), (Ts0 R)(B,) — V]

< f u(x,y, R)AH"(x,y) + | &:| (4., K) + | &:| (B,
(UXW )N, el

and then one uses Part 4 to estimate the upper integral over S.
PaARrT 6.

sup wJG d(H1 Q@ H™ 1 ® ¢,) < o,
0=r=P J UXW,XG,

Proof. Since the functions {, corresponding to 0 <7 <p are equi-Lipschitz-
ian, there exists a number M such that

Jt(x, 9, R) = M whenever 0 <7 =<p, o2& U, yEW,, RE G,

and ¢, is differentiable at (x, ¥, R). Assuming ¢<#—2 and applying 6.5 with
m=n—2—1 one finds that the above integrals do not exceed

M f f f u(x, v, R)d¢,RAH\ydH" 1x
Uy w, n
< MdaviI,_y HY(W)HY(U) < w.

PART 7. For each €>0 there exist t>0, h>0 and a compact subset S of
E.XG, such that

(Ln ® ¢n)(S) < e
and such that if 0<r=h, then
fr[zt m (U X Ws X Gn)] C S,

f*l ¢’l [A"m (T,O R)(B")7 K]d(Ln ® d>n)(z, R) < €.
N

ot g
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Proof. Recalling 5.10 choose a number M =1 such that
| 2;[(A4,, K) + | ®:| (B) =M for0O<7r<s.
Assured by Parts 1 and 4 that
(L. ® ¢n)[t0(Z0)] = O,

f wtod(H™ @ H™' @ ¢,) = 0,
(UXW XG) NS [£0(Z0)]

use Part 6 to secure an open subset P of E,XG, such that
Co(Zo) C P, (L. Q ¢.)(P) < ¢/(2M),

f uJCod(H 1 @ H 1 ® ¢,) < €/2.
(UXW XGn) Nt (P)

Choose a compact subset S of P such that
Col(U X W, X Gr) N Zo] C Interior S,
choose a positive number ¢ such that
col(U X W, X G,) N Z,] C Interior S,
and choose a positive number % <s such that if 0 =7 =<#, then
&(U X W, X G,) N Z,] C Interior S,
Gl X WX Go) = €' (P)] C (Ea X G) = S.
Since the functions J¢{, converge boundedly to J{, one may also require that

if 0=<7=<h then

f Wed(H @ H™' @ ¢) < ¢/2.
(UXW xGn)NEg 7 (P)

Accordingly, if 0 <7 =k, then
(U X W, X G) N & (S) C ¢a (P,
and it follows from Part 5 that

f *| &;| [4-N (T.0 R)(By), K]d(La ® ¢a)(z, R) < ¢/2 + Me/(2M) = .
S

PART 8. For L,®¢, almost all (2, R) in E,XG,,
reach[4 N (T.o R)(B)] > 0

and ®;A,N(T.0 R)(B,), -] converges weakly to ®;[AN(T.0 R)(B), -] as
r—0+-.
Proof. Since these assertions are obviously true in case AN (T, o R)(B) is
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empty, and since E, is the union of countably many compact sets, it is
sufficient to prove that the assertions hold L, ®¢, almost everywhere in

M(K) = {(z, R): A N (T.0 R)(B) meets K},

where K is a compact subset of E,.
Given €>0, apply Part 7. For (2, R)& M(K)—S one sees from Parts 2
and 3 that if 0 <7 =<#h, then

GG R} CUXW, X G, (5 R & (2,
reach[4, N (T.0 R)(B,)] > (o — h)t/4,

and uses 6.10, 4.13, 5.9 to infer that
reach[A N (T.o R)(B)] = (p — h)t/4

and &;[4,N(T. o R)(B,), -] converges weakly to ®;[AN(T.0 R)(B), -] as
r—04-.

In the remaining parts of the proof of the theorem some further conventions
are needed:

For >0, REG, let

et Ve X Wi — Ey, 7r.8(%, y) =X — R(J’)-
For r>0 let 9,: V. X W, XG,—E,XG,,

ﬂf(xr Y R) = ("T.R(x) y)’ R).

For 0 <7 <p let I', be the subset of V,X W, consisting of all points (x, ¥)
such that either (grad 5,4)| V. is not differentiable at x or (grad 63)| W, is not
differentiable at y.

For 0<r<p, x& V, let V,(x) be the intrinsic tangent space of V, at x.

For 0<r<p, y&EW, let W,(y) be the intrinsic tangent space of W, at y.

For 0<r<p, (2, R) E(E.XGn) —{+(Z0), xEV.N(T: 0 R)(W,;) let 7.(3, R, x)
be the intrinsic tangent space of V,MN\(T, 0 R)(W,) at «x.

For 0<r<p, (2, R)E(E.XG,) —{-(Z0) let

r,er: Ve (T.0 R) (W) =V, a,z,r(%) = x;
broer: Vi (T:0 RY(W,) > Wry, by or(x) = (R71o T-,)(%).
Observe that if x€ V,N\(T, 0 R)(W,) and y=(R"'o T_,)(x), then da, . r and

db, ..r map 7.(2, R, x) isometrically into V,(x) and W,(y), and induce homo-
morphism

£ *
a,.r and b, .

mapping A**[V,(x)] and A**[W,(y)] into A**[r.(3, R, x)].
Defining A,..; and ¢n,; as in 5.11 (15) and 6.5 let
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Ui(% 9, R) = An_s_s,;(| grad 64(x) + R[grad s5(3)] |,
| grad 64(x) — R[grad s=]|)
for j=0, - - -, n—2—1, d4(x) <p, 5(y) <p, REG,. Also let

n—2—1 n— 2 n—1 “l/n— 1\
si:( b )(n—Z—i)(n—Z—i—j> ( 7 ) "
ti=a(n— ) (n — i) eng;si(n —i —j — 1)!
an —i— 7 = DG+ Dia(G+ 1).
PARrT 9. If 0<r<p, REG,, (x, ) EV, X W,, then
Tnrr(x,3) = 20-012| grad 64(x) A R[grad 65(»)] | .
Proof. Since
dim(tan[V,, x] N tan[R(W,), R(»)]) = »n — 2,
there exist ey, - - -, e,&E, such that
ey, * * *, €n—y, €,1 is an orthonormal base of Tan[V,, x],

€1, * * *, €a—2, €, i3 an orthonormal base of Tan[R(W,), R(y)].

Moreover the intrinsic tangent space of V,X W, at (x, y) has an orthonormal
base consisting of 2% —2 vectors which d7, r maps onto

€1, " ", €n2 €n_1, €1, " " ", €12, €y
respectively, and therefore
Jﬂr.R(x, y) = 2(7‘—1)/2| €1 /\ e /\ €n—2 /\ €r—1 /\ enl = 2("_1)/2| €n—1 /\ 6n| .

Now the orthogonal complement of e, - - -, e,_, has the two orthonormal
bases

{ €1, grad 34(x)} and {e,, R[grad s},
whence it follows that
en1/\ en = & grad 84(x) A R[grad s5(y)].
PArT 10. If 0<r<p, then
(H*' @ H™' ® ¢u)[(r7 0 §)(Zo)] = 0.
Proof. From Theorem 3.1 and Part 1 one obtains
f Jn.dH—Hn(=1)[2 = H"‘z[m“{ (2 R)}]dHn+n(n—l)/2(z’ R) = 0.

2 8 (Z0)] tr(Zo)

Furthermore J7, vanishes almost nowhere, because Part 9 shows that if
(xy y)e VrXWr, then
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Ine(2, v, R) = Jnr,r(x,y) # 0 for ¢, almost all R in G,.
Parrt 11. If 0<7<p, then, for L,Q@¢, almost all (3, R) in E,XGn,,

2T N omrlz)) = 0.
Proof. Since H?n%(T,) =0, H2—2+0—D/%(, X G,) =0, and 3.1 implies that

f H2[(T, X G.) N 757 (%, R)}|dH==D/2(z R) = 0.
EnXGn
Moreover, if (z, R) EE,XG,, then

(T, X G) N {3 B} = {3, 9, B): (%, 9) € T, N nrels} )

is isometric with T',Ny4{z}.

Throughout the following Parts 12 to 17 let x and ¥ be bounded continuous
functions on E,, and suppose x has compact suppors.

PART 12. Suppose 0 <r <p, (2, R) E(E.XGn) —{+(Zo) and

2T N one{z)) = 0.
If iSn—2, then

,f x ‘(o R o T_,)dcb,-[A, N (T.o R)(B,),-]
v,N(7z°R)(W,)
n—2—1
= a(n — i) (n — i)"12- =012 3 x(@)¥ () Us(x, y, R)
j=0 .5 (2}
trace(ar o e[ Ba()">1br .. e[ Ep () ) dH™(x, 5).

Ifi=n—1or n, then |<I>,- [4.N(T. 0 R)(B.), V.\(T:0 R)(W,)]=0.
Proof. Applying the results of 5.2, 5.3, 5.11 with

P=V.N\(T,oR(W,, C= A4.N(T.0R)(B),
p=(grad 82)| P, v = [grad6zo R0 T_)]| P,

one finds that

®,(C,0) = an — i)"Y (n — 3)! thrace[un_g_i(p)]dH"—%
for every Borel set Q CP, and consequently
fP x- (o R 1o T_.)dd:«(C, *)

= aln — i)~ i(n — i) f XOWIR 0 T)(p)] tracelun_si(p)JAH.
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Letting
h: En o En X En; h(?) = (P)(R..l o T—i)(p)) for P E E"’

one sees that [h(p)—h(q)[ =21/2[p——q| whenever p, ¢ E,, and that A(P)
=1, };{z}. Hence the preceding integral over P equals

2—-(n—2)/2f ) ’x(x)lp(y) trace[un_g_;(x)]dﬂ"“2(x, y)

—renn’ S [ @)U, R tracel MmN Y ME G, 3).

j=0 R el

Now observe that for pE& P the bilinear forms of 7,(z, R, p) corresponding to
M(p) and N(p) are the second fundamental forms of P at p associated with
the normal vector fields 4 and »; that for (x, y)E(V, X W,) —T, the bilinear
forms of V,(x) and W.(y) corresponding to E.(x) and Eg(y) are the second
fundamental forms of V, and W, at x and y associated with the normal vector
fields (grad 84)| V. and (grad 8z)| W,; and that

p = [(grad 84) | V.] 0 a,.. 5, v = Ro [(grad éz) | W.] 0 by, .-

Since second fundamental forms behave naturally under inclusion maps and
isometries, one infers that

* *
M(x) = ar..e[Ea()], N(y) = by,..e[Es(y)]
whenever (x, ¥)En,3{z} —T..
ParT 13. If 0<r<p and j=0, - - - , n—2—1, then, for H* '@ H"! almost

all (x,y) in V,XW,,

Ui(z, y, R) | grad 84(x) A R[grad d5(y)] |

Gy
- trace(ar.e-r ) [ Ea(®)" 167 o r iy [ B2 ()] déu R
= Cn—g—i,;5itrace[ Ea(x)"2i]trace[ E(y)7].
Proof. Using Part 10 one sees that, for H*1® H"! almost all (x, y) in
Vf X W"
éa[{R: (x — R(y), R) € ¢(Z0)}] =0 and (x,y) & I
Fix such a point (x, ¥) and let
v = grad §4(x), w = grad §z(y), V = V.(x), W = W.(y),
M = Eq(x)v € Avriinmt=mi(), N = Ep(y) € AY(W),
2(R) = Ui(%,5,R) |v A\ R(w)|
A,‘._z—c,j“ v+ R(w)l , I v — R('w){ ] I UVAN R(w)l for R € G,.
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Recalling 4.6 identify V with Tan(V,, x), and W with Tan(W,, y).
For ¢, almost all R in G, it is true that

(x - R()’), R) GE g-r(ZO)’

and one may identify 7.(x — R(y), R, x) with VNR(W). Then the restrictions
of

dar R R, dbr R ) R
to 7.(x—R(y), R, x) become identified with
the inclusion map of ¥V M R(W) into V,
R VNRW):VNRW)—W.

Now readopt the conventions of 6.7 with k=#n—2, noting that n(R) is
determined by v @ R(w), hence by P o Rl W'. For wEQ let S(w) be the inclu-
sion map of the domain of w into V, and let

{(w) = trace[S(w)*(M)-w*(N)].
Then the given integral can be computed by 6.7, with

f Ndpn = Cpg—i j

éccording to 6.5. Furthermore, if (g, k) EG X H, then
dmn(hofoelog™) = rug(goe),
¢(hofoetog™)
= trace((go e)*[S(kofoelo g )*(M)-(hofoetog)*(N)])
= trace[(g 0 )*(M)- (ko ))*(V)].
Accordingly 6.8 implies that
. t(hofoetog™Nd(u @ v)(g, h) = sjtrace(M)trace(N).
XH

ParT 14. If 0<r<p and j=0, - - - , n—2—1, then

f f x@YG) Uz, 3, R)
EpXG,, {2z}

" ,R
-trace(ar,q, 2 [ B (@) 2118 . e[ B4 () ) AH**(x, )d(Ln ® 6.)(, R)
= 2("—2)/267,_2_,',]*5,'(” —_ — j —_ 1) 'a(n -1 ’-] — 1)(j -+ 1) !a(j-l— 1)
'q’i+i+1(Ar) X) <I:'n—i—l(Br’ 'I’)

Proof. To see that the above integral exists, apply Theorem 3.1 with
f=n,, observing that if (z, R)EE,XG,, then n7*{(z, R)} is the isometric
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image of 7, 4{2} under the map carrying (x, y) into (x, y, R).
To compute the integral, first apply Fubini’s Theorem to L,®¢,, and
for each R&G, apply 3.1 with f=17. z to obtain

f f x(@W () Ui(x, 9, R)trace(aror .z Ea(x)21]
Gn V V XW,

* ;
br.z—R(y).R[EB(y)i])Jﬂr.R(x’ y)dH”“z(x, y)d¢nR
Next apply Fubini's Theorem to H*?®¢,, and apply Part 9 to obtain

20w f x@¥®) [ Uiz, 9, B)| grad 54(x) A Rlgrad 55(3)] |
V XW, Ga

. trace(df,z—zz (@) ,R[EA (x)"_2_i_j]bt.z—k @) ,R[EB(y) f])d¢anH =2z, ).
Then apply Part 13, and apply Fubini’s Theorem to H* '@ H*! to obtain
2012, s, f x(@)trace[ Ea (@) ——1]dH 1z [ w(y)trace[Za(y)|dmy.
v, W,

Finally apply the last formula in 5.8 twice to determine the integrals over
V,and W,.
PARrT 15. If 0<r<p and 1Sn—1, then

f 8.4, N (T.0 R)(B), x- W0 R0 T_)]d(L. ® $:)(z, R)

nXGn

= éi(Ar) X)‘I)n(Bn ll/) + Q”(Af) X)Qi(Bf) ‘I’)
n—2—3

+ 2 4®ui1(Ar, X)Buimr(Br, ¥).
=0
Proof. If (z, R) &E(E. XG.) —{(Zy), then
<I>i[A,. N (T.0 R)(By), x*($#o R o T—z)]

equals the sum of the three integrals

C(z R) = f x-@o R0 T_)d®. 4, N (T.0 R)(B), -],
V.O(Tz 0 R)(B,—~W,)

DGz, R) = f ) x- @0 R0 T_)d®:[ 4, N\ (T.0 R)(BY), -,

,.-V,)ﬁ(T:O R)(W,)
E(z R) = f x- (Yo R0 T_)dd;[4.N (T.0 R)(B,), -].
V. (T:°R)(W,)

and one sees from 6.6 and 5.8 that
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CGa, 1) = f x- W0 R0 T_)d%(4,, ),
(T, 0 R)(B,~W,)
D(z R) = f x-(# 0 R0 T_)d%;[(T, 0 R)(B,), -]
AV,

- f (x o T.o R)-yd®:(B,, -).
(R0 T_s)(4,~V,)

Applying 6.9 one obtains

f CA(Ln ® ¢s) = Bi( Ay, 3)8u(Bsy ¥),
Ep,XGyp

f Dd(La ® ) = u(Ayr, %)®:(Bs, ).
E, XG,

If 1=n—2, it follows from Parts 1, 11, 12, 14 that

n—2—3
f Ed(L,® ¢2) = 3 t:®srser(Ar, )Bnoir(Bry ¥).
Enxcn j=0
If i=n—1, then E(z, R)=0 for (2, R)EE, XG»—{.(Zo).
Part 16. If i=n—1, then
f 84 N (T.0 R)(B), x- (¥ 0 R0 T_)|d(L, ® é)(z, R)
E, XG,

= 0(4, x)®(B, ¥) + 2u(4, x)i(B, ¥)

n—2—1¢
+ 20 4®i(4, X)Pair(B, ¥).
§=0
Proof. Since one knows from 5.10 that, for £=0, - - -, #,

(I)k(Af) X) - ‘I)k(A’ X) and (I)k(Br) ‘p) - q)k(By \l/)

as r—0-, it will be sufficient to show that the integral of Part 15 approaches
the integral of Part 16 as r—0-+.

Let M be a common upper bound of |x| and |¢|, and let K be the sup-
port of x.

Given €>0, choose ¢, &, S according to Part 7. Then

f | ®,JA4,.N\ (T,0R)(B,),x-WoR10T_,) | d(L, ® ¢.)(z, R) < eM?
S
for 0 <r=#, and it follows from Part 8 and Fatou’s Lemma that

f | 4 N (T.0 R)(B), x* Wo R o T-,)]| d(Ls ® ¢4)(2, R) < eM?.
S
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Referring again to 5.10 one obtains
N = sup { | ®,] (€): C C By and reach(C) 2 (p — h)t/4} < <.

If (3, R)E(E.XG,)—S, 0<r=<h and 4,N\(T, 0 R)(B,) meets K, then Parts
2 and 3 imply

(b — B)t/4 < reach[A4, N (T, 0 R)(B,)] = reach[(R"' o T_,)(4,) N B,],
| @:[ [4- N (T.oR)(B)] = | & [(R"'0 T_)(4) N\ B,] < N,
| 2[4, N\ (T.o R(B)], x- Wo R0 T_)| < NM.
Observing that the set
D = {(3, R): (T.0R)(B;) meets K} = {(x— R(y),R): x € K,RE G,y € By}
is compact, and recalling Part 8, one may apply Lebesgue’s theorem concern-

ing bounded convergence to D — S, and conclude that

lim sup | (4, N (T.0 R)(B,), x- (¥ o R-10 T_,)]
-0+ E,XGy

— &[4 N (T.0 R)(B), x- (W0 R0 T_,)]| d(Ln @ .)(5, R) < 2¢M.
ParT 17.

f 2[4 N (T.0 R)(B), x -(¥ 0 R0 T_)]d(L, ® $.)(z, R)
E,XG
= q:,,(A, x)q)”(B, \0)

Proof. Using 5.8 and 6.9 one finds that the above integral equals

f f X0 R0 T_)dLd(L, ® 6,)(z, R)
E xGp v 4N(T.0 R)(B)
- f f x- (00 R0 T_)d®,(4, (L. ® ¢:)(z R)
E,,)(G,, (TzO R)(B)

— ®.(4, %) fB VAL, = ®,(4, x)%.(B, V).

PART 18. PROOF OF (3). In order to prove that the integrand of (3) is an
L,®¢. measurable function, consider for m =1, 2,3, - the set F,, of all
real valued continuous functions f on E, such that

| f(x)| = 1 whenever x € E,,  f(x) = 0 whenever 8x(x) = m!,

and let C, be a countable dense (with respect to uniform convergence) subset
of Fu. One sees from Parts 16 and 17 that if fEF,, then

®:[4 N (T.0 R)(B), ]
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is L, ®¢, measurable with respect to (2, R). Furthermore

| &:| [4 N (7.0 R)(B), K] = Tim sup &.[4 N (T:0 R)(B), /.

—>00

Now one may use Part 8, Fatou’s Lemma, and Parts 5, 6 to obtain

f el 140 .0 BB), Kl © 606 B)
EpXGp,

< lim inf | ®:| [4, N (T.0 R)(B.), K]d(L. ® ¢a)(2, R) < .

-0+ E;XGp

PArT 19. PrOOF OF (2) AND (4). Through use of (3) and bounded con-
vergence, the formulae of Parts 16 and 17 may be extended from the con-
tinuous case to the case in which x and ¢ are bounded Baire functions, x hav-
ing bounded support. Hence the proof of (2), and its corollary (4) resulting
when x and ¢ are the characteristic functions of 4 and B, may be completed
by showing that

ti=ymi+ji+1,n—j5—1) forj=0---,n—2—1.
For this purpose let k=:¢4j+41, I=n—j—1 and consider the special case
where 4 and B are k and ! dimensional cubes. Using 5.15 one sees that
&(A) = H*(A), dn(4) =0 form >k,
&,(B) = HYB), ®,(B) =0 form > 1.

Moreover, for L,®¢, almost all (z, R) in E,XG,, AN(T;0 R)(B) is either
a k+!—n=1 dimensional convex set or empty, hence

&[4 N (T.o R)(B)] = B[4 N (T.0 R)(B)].

Substituting in the formula of Part 16 one obtains
[ man @ BEUL © 636 B) = LEAED).
EnXGn

On the other hand [F7, 6.2] shows that this integral equals
v(n, k, DH*(A)H'(B).

6.12. REMARK. The following simple example shows that 6.11 (1) may fail
to hold in case neither A nor B is compact.

Let H be the subgroup of E, consisting of all points both of whose co-
ordinates are integers, let C be a circle of radius 1/3 in E,, let 4 be the union
of all translates of C by elements of H, and let B be a straight line in Ej, so
that reach(4) =1/3 and reach(B)= ». Then almost all isometric images of
B have irrational slopes. Moreover, if L is a straight line with irrational slope,
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then the image of L in E;/H is dense in E;/H, hence L cuts suitable translates
of C at arbitrarily near points, and therefore reach(4ML)=0.

6.13. THEOREM. If B is a compact subset of E,, reach(B) >0,y is a bounded
Baire function on E,, 1=0, - - -, n and m=0, - - -, n—1, then

f (I)i[kz_m(R, w) m .B, lp]d(¢n ® Lm)(R’ w) = ry(n’ n — m, m _I__ i)¢m+i(B, 'l/)'
G XEm
Proof. Let
A=E,N{xm;i=0fori=1,---,m}

and let x be the characteristic function of
AN{x:0< ;s tfori=m+1,---,n}.
Then ®,_..(4, x) =1, $;(4, x) =0 for j£n—m, and the sum of 6.11 (2) equals
v(n, n — m, m + i) ®nii(B, ¥).

Identifying E, with E,, X E,_, and applying the Fubini theorem one finds
that the integral of 6.11 (2) equals

f f $JA N (T 0 R)(B), x- @0 R0 Tonryy)
EmXGn¥ E

n—m

dLn—myd(Lm ® ¢ﬂ) (w7 R)'

In order to compute inner integral with respect to y, for a fixed (w, R),
abbreviate

&[4 N (TwonoR(B), -] =p VYoR'0T(won=1f
and note that

®:[4 N (Tw»oR)(B),x Wo R 10T w—p)] = f (xo T0,p)fdu
whenever yEE,_,, because A =T,,y(4); hence one obtains
[ x50 u, 9Ly
Ep—m EpXEp—m

- f 1, v) f x(at, v+ 3)dLuydus(a, 9)
EpXEp—m Epem

- f fdu = ®:[(R'0 T'Cw0y)(4) N B, ¥]

= &\ (R, —w) N B, ¥]
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because if (%, v) belongs to the support of y, then (%, v) E4, »=0, and

f x(0, v + ¥)dLnmy = 1.
E

n—m

Thus one finds that the integral of 6.11 (2) equals
[ alim®, —w) N B Y. © ¢, B),
EmXGn

and one completes the proof by observing that L, ®¢, is invariant under the
inversion mapping (w, R) onto (—w, R71).

6.14. REMARK. If A CE,, reach(4)>0 and Q is a bounded Borel subset
of A® [see 4.15 (3)], then

®;(4,0)=0forj=k+1,:---,mn,
0 = &4, Q) = HYQ),

&.(4, Q) > 0 in case H*(Q) > 0,
&,(4, Q) = H¥Q) incase 4 = A®,

These statements are obviously true for #=0, because 4 is countable and
L,({x:84(%) < 7 and £a(x) = a}) = rra(n)®(4, {a})
~whenever 0 <7 <reach(4) and a 4. Moreover one may pass from k=0 to
k>0 by means of the following considerations: Recall 6.11 (1), assume 4 is

compact, and let
pf,: E, — Ey, pﬁ(x) = (%1, * -+, %) for x € E,.
Using 4.15 (3), verify that

0NN R w) ClANN (R, »)]©

for ¢, ® L almost all (R, w) in G, XEy; in fact the set of all those (R, @) in
G, X Q for which

dim[Nor(4, a) + R(E,N {x:2; =0fori=k+1,-- -, n})] <n

has ¢,® Ht= H»»—D/2+* measure 0, and the image of this set under the
Lipschitzian map

fi Ga X Q= Ga X Ey,
f(R, @) = (R, pno R )(a) for (R, a) € G X O,

contains the set of all those (R, w) for which the above inclusion fails. Now
apply 6.13 with B, m, k replaced by 4, k, Q; in particular for 4=0 compare
the resulting formula
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B(n, B®(4, Q) = f B[4 NNTHR, w), Qe ® L) (R, w)

GnXE

with the formula

Bln, HH'(Q) = f 20 NN R, ©)]d(ée ® LO(R, 1)

GrXEg

obtained from 4.13 (3) and [F4, 5.14].
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