for $\phi \in \mathcal{D}^n(\mathbb{R}^n)$, and

$$(\partial T) \psi = \lim_{j \to \infty} (\partial T_j) \psi = [(\partial S) \bot Y_{n+1} - S \bot D Y_{n+1}] p^{\#} \psi$$

for $\psi \in \mathcal{D}^{n-1}(\mathbf{R}^n)$; clearly T is a locally normal current. We also see from 4.3.2(1) that, for $\phi \in \mathcal{D}^n(\mathbf{R}^n)$,

$$T(\phi) = [S \, \sqcup \, p^{\#} \, \phi](Y_{n+1}) = \int \langle e_1, \ldots, e_n, \phi(x) \rangle \cdot \langle S, p, x \rangle (Y_{n+1}) \, d\mathcal{L}^n x.$$

4.5.9. Theorem. If f is a real valued \mathcal{L}^n measurable function such that

and if

$$\lambda(x) = (\mathcal{L}^n)$$
 ap $\lim_{z \to x} \inf f(z) \in \overline{R}$ for $x \in \mathbb{R}^n$,

 $T = \mathbf{E}^n \perp f \in \mathbf{N}_n^{\mathrm{loc}}(\mathbf{R}^n)$

$$\mu(x) = (\mathcal{L}^n)$$
 ap $\lim_{z \to x} \sup f(z) \in \overline{R}$ for $x \in \mathbb{R}^n$,

$$F(x) = [\lambda(x) + \mu(x)]/2 \text{ for } x \in \mathbb{R}^n,$$

$$G = \mathbf{R}^{n+1} \cap \{y \colon \mu(y_1, \dots, y_n) \ge y_{n+1}\}, \quad S = (-1)^n \, \partial(\mathbf{E}^{n+1} \, \sqsubseteq \, G),$$

$$C = \mathbf{R}^{n+1} \cap \{y \colon \lambda(y_1, \dots, y_n) \le y_{n+1} \le \mu(y_1, \dots, y_n)\},$$

$$E = \mathbf{R}^n \cap \{x \colon \lambda(x) < \mu(x)\}.$$

then λ , μ , F, G, S, C, E are uniquely determined by T (because f is \mathcal{L}^n almost determined by T) and the following thirty-one statements hold:

(1) If $f: \mathbb{R}^n \to \mathbb{R}$ is locally Lipschitzian and $g: \mathbb{R}^n \to \mathbb{R}^{n+1}$, $g(x) = (x_1, \dots, x_n, f(x))$ for $x \in \mathbb{R}^n$,

then g is locally Lipschitzian and

$$S = g_{\#} \mathbb{E}^{n}, \quad ||S|| = g_{\#} \lceil \mathcal{L}^{n} \lfloor (1 + |D f|^{2})^{\frac{1}{2}} \rceil.$$

- (2) λ , μ , F are Borel functions.
- (3) For \mathcal{H}^{n-1} almost all x in \mathbb{R}^n , $-\infty < \lambda(x) \le \mu(x) < \infty$.
- (4) $S \in \mathcal{R}_n^{loc}(\mathbf{R}^{n+1})$.
- $(5) ||S|| = \mathcal{H}^n \, \lfloor C.$
- (6) For $\phi \in \mathcal{D}^n(\mathbb{R}^n)$, $T(\phi) = S(Y_{n+1} \wedge p^{\#} \phi)$ and $\mathbb{E}^n(\phi) = S(p^{\#} \phi)$.
- (7) For $\psi \in \mathcal{D}^{n-1}(\mathbb{R}^n)$, $(\partial T)\psi = -S(DY_{n+1} \wedge p^{\#}\psi)$.
- $(9) \mathcal{L}^n = p_{\#} \| S \perp D Y_1 \wedge \cdots \wedge D Y_n \|.$
- (10) $\|\partial T\| = p_{\#} \|S \perp DY_{n+1}\| \text{ and, for } i \in \{1, ..., n\},$ $\|(\partial T) \perp DX_{1} \wedge \cdots \wedge DX_{i-1} \wedge DX_{i+1} \wedge \cdots \wedge DX_{n}\|$ $= p_{\#} \|S \perp DY_{1} \wedge \cdots \wedge DY_{i-1} \wedge DY_{i+1} \wedge \cdots \wedge DY_{n+1}\|.$
- $(11) \mathcal{L}^n + \|\partial T\| \ge p_* \|S\|.$

(12) For \mathcal{L}^1 almost all real numbers s,

$$p_{\#}\langle S, Y_{n+1}, s\rangle = -\partial \left[\mathbf{E}^n \sqcup \{x \colon f(x) \geq s\} \right] \in \mathcal{R}_{n-1}^{\mathrm{loc}}(\mathbf{R}^n).$$

- (13) $\partial T = \int \partial \left[\mathbf{E}^n \, \sqcup \left\{ x \colon f(x) \ge s \right\} \right] d\mathcal{L}^1 s \text{ and}$ $\|\partial T\| = \int \|\partial \left[\mathbf{E}^n \, \sqcup \left\{ x \colon f(x) \ge s \right\} \right] \|d\mathcal{L}^1 s.$
- (14) For every $\|\partial T\|$ integrable \overline{R} valued function k, $\|\partial T\|(k) = \iint_{\{x: \ \lambda(x) \le s \le \mu(x)\}} k \ d\mathcal{H}^{n-1} \ d\mathcal{L}^1 \ s.$
- (15) For every Borel subset W of E,

$$\|\partial T\|(W) = \mathcal{H}^n[C \cap p^{-1}(W)] = \int_W (\mu - \lambda) d\mathcal{H}^{n-1}.$$

- (16) E is countably $(\mathcal{H}^{n-1}, n-1)$ rectifiable.
- (17) For \mathcal{H}^{n-1} almost all b in E there exists $u \in S^{n-1}$ such that

$$\mathbf{n}[\{x: f(x) \ge s\}, b] = u$$
 and $\mathbf{n}[G, (b_1, ..., b_n, s)] = (u_1, ..., u_n, 0)$
whenever $\lambda(b) < s < \mu(b)$.

(18) If n > 1, R and σ are as in 4.5.2, $t \in \mathbb{R}$,

$$\mathscr{L}^n[R \cap \{x: f(x) > t\}] \le \mathscr{L}^n(R)/2, \quad \mathscr{L}^n[R \cap \{x: f(x) < t\}] \le \mathscr{L}^n(R)/2,$$
 and $\beta = n/(n-1)$, then

$$\left(\int_{R} |f(x)-t|^{\beta} d\mathcal{L}^{n} x\right)^{1/\beta} \leq \sigma \|\partial T\| (R).$$

(19) If
$$n > 1$$
, σ is as in 4.5.3, $b \in \mathbb{R}^n$, $0 < \rho < \infty$, $t \in \mathbb{R}$,
$$\mathcal{L}^n \left[\mathbb{U}(b, \rho) \cap \{x \colon f(x) > t\} \right] \le \alpha(n) \rho^n/2,$$

$$\mathcal{L}^n \left[\mathbb{U}(b, \rho) \cap \{x \colon f(x) < t\} \right] \le \alpha(n) \rho^n/2,$$

and $\beta = n/(n-1)$, then

$$\left(\rho^{-n}\int_{\mathbf{U}(b,\rho)}|f(x)-t|^{\beta}\,d\mathcal{L}^{n}\,x\right)^{1/\beta}\leq\sigma\,\rho^{1-n}\|\partial T\|\,\mathbf{U}(b,\rho).$$

- (20) If $\lambda(b) = \mu(b) \in \mathbb{R}$, n > 1, $\beta = n/(n-1)$ and σ is as in 4.5.3, then $\lim_{\rho \to 0} \sup_{+} (\rho^{-n} \int_{U(b,\rho)} |f(x) F(b)|^{\beta} d\mathcal{L}^{n} x)^{1/\beta} \leq \sigma \alpha (n-1) \Theta^{*n-1}(\|\partial T\|, b).$
 - (21) If n > 1, then, for \mathcal{H}^{n-1} almost all b in $\mathbb{R}^n \sim E$, $\lim_{\rho \to 0+} \rho^{-n} \int_{U(b,\rho)} |f(x) F(b)|^{n/(n-1)} d\mathcal{L}^n x = 0.$

(22) If n > 1, then for \mathcal{H}^{n-1} almost all b in E the vector u characterized by (17) satisfies also the conditions

$$\lim_{\rho \to 0+} \rho^{-n} \int_{Q^{+}(b,\,\rho)} |f(x) - \lambda(b)|^{n/(n-1)} \, d\mathcal{L}^{n} \, x = 0$$

with
$$Q^+(b, \rho) = U(b, \rho) \cap \{x : (x-b) \cdot u > 0\}$$
, and
$$\lim_{\rho \to 0+} \rho^{-n} \int_{Q^-(b, \rho)} |f(x) - \mu(b)|^{n/(n-1)} d\mathcal{L}^n x = 0$$

with $Q^{-}(b, \rho) = U(b, \rho) \cap \{x : (x-b) \cdot u < 0\}.$

(23) If n=1, U is an open interval and

$$r = \inf\{s: \mathcal{L}^1[U \cap \{x: f(x) < s\}] > 0\},\$$

$$t = \sup\{s: \mathcal{L}^1[U \cap \{x: f(x) > s\}] > 0\},\$$

then $t-r \le \|\partial T\|(U)$; consequently

$$\mathbf{V}_{a}^{b} F \leq \|\partial T\| \{x : a \leq x \leq b\} \text{ for } -\infty < a < b < \infty, \\ \{\lambda(b), \mu(b)\} = \{\lim_{x \to b^{-}} F(x), \lim_{x \to b^{+}} F(x)\} \text{ for } b \in \mathbf{R}.$$

(24) For \mathcal{H}^{n-1} almost all b in \mathbb{R}^n ,

$$F(b) = \lim_{\varepsilon \to 0+} \int f(b+\varepsilon z) \psi(|z|) d\mathcal{L}^n z = \lim_{\varepsilon \to 0+} \int f(x) \varepsilon^{-n} \psi(\varepsilon^{-1}|b-x|) d\mathcal{L}^n x$$

whenever ψ is a real valued \mathcal{L}^1 measurable function with compact support such that

such that
$$\mathcal{H}^{n-1}(S^{n-1}) \int_0^\infty r^{n-1} \psi(r) d\mathcal{L}^1 r = 1 \quad \text{and} \quad \int_0^\infty r^{n-1} |\psi(r)|^n d\mathcal{L}^1 r < \infty;$$
 furthermore $\langle T, \mathbf{1}_{\mathbf{R}^n}, b \rangle = F(b) \delta_b.$

(25) For $\|\partial T\|$ almost all b in $\mathbb{R}^n \sim E$,

$$\overrightarrow{\partial T}(b) = *\mathbf{n}[\{x: f(x) \ge F(b)\}, b] = -(\wedge_{n-1} p) \eta/|\eta|$$

where $\eta = \vec{S}(b_1, \ldots, b_n, F(b)) \sqsubseteq Y_{n+1}$.

(26) For \mathcal{L}^n almost all b the function f has an \mathcal{L}^n approximate differential L at b such that

(I) either $\Theta''(\|\partial T\|, b) = 0$ and L = 0, or $L = -\mathbf{D}_{n-1} \lceil \Theta^n(\|\partial T\|, b) \overrightarrow{\partial T}(b) \rceil$;

(II) in case n > 1 and $\beta = n/(n-1)$,

$$\lim_{\rho \to 0+} \rho^{-n} \int_{U(b,\rho)} \left| \frac{f(x) - f(b) - L(x-b)}{|x-b|} \right|^{\beta} d\mathcal{L}^n x = 0;$$

(III) in case n = 1, L is the differential of F at b;

(IV)
$$\vec{S}(b_1, ..., b_n, f(b)) = (-1)^n D^1(M/|M|)$$
 with

$$M = Y_{n+1} - (L \circ p) \in \wedge^1 \mathbf{R}^{n+1}$$

(27) If
$$n > 1$$
, $i \in \{1, 2, ..., n\}$,
$$\Omega_{i} = (-1)^{i} DX_{1} \wedge \cdots \wedge DX_{i-1} \wedge DX_{i+1} \wedge \cdots \wedge DX_{n},$$

$$q_{i}(x) = (x_{1}, ..., x_{i-1}, x_{i+1}, ..., x_{n}) \in \mathbb{R}^{n-1} \text{ for } x \in \mathbb{R}^{n},$$

$$p_{i}(y) = (y_{1}, ..., y_{i-1}, y_{i+1}, ..., y_{n+1}) \in \mathbb{R}^{n} \text{ for } y \in \mathbb{R}^{n+1},$$

$$\chi_{i,z}(t) = (z_{1}, ..., z_{i-1}, t, z_{i}, ..., z_{n-1}) \in \mathbb{R}^{n} \text{ for } z \in \mathbb{R}^{n-1}, t \in \mathbb{R},$$

and if W is a Borel subset of \mathbb{R}^n , Z is a Borel subset of \mathbb{R}^{n-1} , $-\infty < \alpha < \beta < \infty$, $\gamma \in \mathcal{D}^0(\mathbb{R}^n)$, spt $\gamma \subset \{x : \alpha < x_i < \beta\}$, then

$$\|(\partial T) \sqcup \Omega_i\| (W) = \int N[p_i|C \cap p^{-1}(W), v] d\mathcal{L}^n v,$$

$$\|(\partial T) \sqcup \Omega_i\| \{x \colon q_i(x) \in Z, \alpha < x_i < \beta\} = \int_Z \lim_{\delta \to 0+} \mathbf{V}_{\alpha+\delta}^{\beta-\delta}(F \circ \chi_{i,z}) d\mathcal{L}^{n-1} z,$$

$$(\partial T) (\gamma \wedge \Omega_i) = \iint_{\alpha}^{\beta} (\gamma \circ \chi_{i,z}) d(F \circ \chi_{i,z}) d\mathcal{L}^{n-1} z.$$

(28) If n=1, W is a Borel subset of \mathbb{R} , $-\infty < \alpha < \beta < \infty$, $\gamma \in \mathcal{D}^0(\mathbb{R})$, spt $\gamma \subset \{x : \alpha < x < \beta\}$, then

$$\begin{split} \|\partial T\| (W) &= \int N [Y_2 | C \cap p^{-1}(W), v] d\mathcal{L}^1 v, \\ \|\partial T\| \{x \colon \alpha < x < \beta\} &= \lim_{\delta \to 0+} \mathbf{V}_{\alpha+\delta}^{\beta-\delta} F, \quad (\partial T) (-\gamma) = \int_{\alpha}^{\beta} \gamma dF. \end{split}$$

- (29) In case n > 1 the following three conditions are equivalent:
 - (I) For $W \subset \mathbb{R}^n$, $\mathcal{H}^{n-1}(W) < \infty$ implies $\|\partial T\|(W) = 0$.
- (II) F is (\mathcal{L}^n) approximately continuous at \mathcal{H}^{n-1} almost all points of \mathbb{R}^n .
- (III) For i=1,2,...,n the functions $F \circ \chi_{i,z}$ corresponding to \mathcal{L}^{n-1} almost all z in \mathbb{R}^{n-1} are continuous on \mathbb{R} .

In case n=1 the equivalence holds provided (III) is replaced by the condition that F be a continuous function.

- (30) In case n > 1 the following six conditions are equivalent:
 - (I) For $W \subset \mathbb{R}^n$, $\mathcal{L}^n(W) = 0$ implies $\|\partial T\|(W) = 0$.
- (II) For $W \subset \mathbb{R}^n$, $\mathcal{L}^n(W) = 0$ implies $\mathcal{H}^n[C \cap p^{-1}(W)] = 0$.
- (III) $(\partial T) \perp \Omega_i = \mathcal{L}^n \perp D_i F \text{ for } i = 1, 2, ..., n.$
- (IV) $\|(\partial T) \perp \Omega_i\| = \mathcal{L}^n \perp |D_i F|$ for i = 1, 2, ..., n.
- (V) For i=1,2,...,n the functions $F \circ \chi_{i,z}$ corresponding to \mathcal{L}^{n-1} almost all z in \mathbf{R}^{n-1} are absolutely continuous on \mathbf{R} .
- (VI) There exists a sequence of functions $f_j \in \mathscr{E}^0(\mathbf{R}^n)$ such that, for every compact $K \subset \mathbf{R}^n$,

$$\lim_{j\to\infty}\int_K |f_j-f| d\mathcal{L}^n = 0 \quad and \quad \lim_{(j,k)\to(\infty,\infty)}\int_K ||Df_j-Df_k|| d\mathcal{L}^n = 0.$$

Furthermore (VI) implies, for every compact $K \subset \mathbb{R}^n$,

$$\lim_{j\to\infty}\int_K \|Df_j - \operatorname{ap} Df\| d\mathcal{L}^n = 0.$$

In case n=1 the equivalence holds provided (V) is replaced by the condition that F be an absolutely continuous function, and Ω_1 is replaced by -1.

(31) If n > 1, $\beta = n/(n-1)$ and $\mathbf{M}(\partial T) < \infty$, then there exists a unique $c \in \mathbf{R}$ such that

$$\left[\int |f(x)-c|^{\beta} d\mathcal{L}^{n} x\right]^{1/\beta} \leq n^{-1} \alpha(n)^{-1/n} \mathbf{M}(\partial T).$$

In case spt f is compact, then c = 0.

In case f is integer valued, then c is an integer and

$$\mathbf{M}(T-c\mathbf{E}^n)^{1/\beta} \leq n^{-1} \alpha(n)^{-1/n} \mathbf{M}(\partial T).$$

Proof of (1). In this case we define the locally Lipschitzian homeomorphism h of \mathbb{R}^{n+1} onto \mathbb{R}^{n+1} by the formula

$$h(y) = (y_1, \dots, y_n, y_{n+1} + f(y_1, \dots, y_n))$$
 for $y \in \mathbb{R}^{n+1}$,

observe that $G = h\{y: y_{n+1} \le 0\}, g = h \circ p^*$, and use 4.1.26, 4.1.8 to compute

$$S = (-1)^n \partial h_{\#} (\mathbf{E}^{n+1} \sqcup \{ y \colon y_{n+1} \le 0 \})$$

= $h_{\#} [(-1)^n \partial (\mathbf{E}^{n+1} \sqcup \{ y \colon y_{n+1} \le 0 \})] = h_{\#} p_{\#}^* \mathbf{E}^n = g_{\#} \mathbf{E}^n,$

because $\partial [\mathbf{E}^n \times (\mathbf{E}^1 \sqcup \{t : t \le 0\})] = (-1)^n \mathbf{E}^n \times \delta_0$. From 4.1.25 and 3.2.3 we see that $\|S\| = \mathcal{H}^n \sqcup \operatorname{im} g = g_{\#}(\mathcal{L}^n \sqcup J_n g)$,

since g is univalent, and for \mathcal{L}^n almost all x we obtain

$$D_{i} g(x) = \varepsilon_{i} + D_{i} f(x) \varepsilon_{n+1} \text{ for } i = 1, \dots, n,$$

$$\langle e_{1} \wedge \dots \wedge e_{n}, \wedge_{n} D g(x) \rangle = D_{1} g(x) \wedge \dots \wedge D_{n} g(x)$$

$$= \varepsilon_{1} \wedge \dots \wedge \varepsilon_{n} + \sum_{i=1}^{n} D_{i} f(x) \varepsilon_{1} \wedge \dots \wedge \varepsilon_{i-1} \wedge \varepsilon_{n+1} \wedge \varepsilon_{i+1} \wedge \dots \wedge \varepsilon_{n},$$

$$[J_{n} g(x)]^{2} = 1 + \sum_{i=1}^{n} [D_{i} f(x)]^{2} = 1 + |D f(x)|^{2}.$$

Thus we have verified (1). However we proceed to amplify our discussion of the locally Lipschitzian case by some observations which will be useful in the sequel. Noting that $p \circ g = 1_{\mathbb{R}^n}$ we obtain

$$p_{\#} \|S\| = \mathcal{L}^n \bot (1 + \|Df\|^2)^{\frac{1}{2}} \le \mathcal{L}^n \bot (1 + \|Df\|) = \mathcal{L}^n + \|\partial T\|.$$