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Abstract

In this paper we begin to explore the application of the multiscale flat
norm introduced in Morgan and Vixie [13] to shape and image analysis.
In particular, we look at the use of the multiscale flat norm signature
for the identification of shapes. After briefly reviewing the multiscale
flat norm, the L'TV functional and the relation between these two, we
introduce multiscale signatures that naturally follow from the multiscale
flat norm and its components. A numerical method based on the min-
cut, max-flow graph-cut is briefly recalled. We suggest using L? mini-
mization, rather than the usual Crofton’s formula based approximation,
for choosing the required weights. The resulting weights have the dual
benefits of being analytically computable and of giving more accurate
approximations to the anisotropic TV energy. Finally, we demonstrate
the usefulness of the signatures on simple shape classification tasks.
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1 Introduction

Since the publication of the paper in 1992 by Rudin, Osher and Fatemi [15],
total variation regularization has gained a great deal of attention due to its
effectiveness in various image analysis tasks. Let €2 be a domain, often rectan-
gular, on which the graylevel image intensity function or input v : 2 — R is
defined. The function f : 2 — R will denote the data, typically a graylevel im-
age we would like to denoise or restore. The Rudin, Osher and Fatemi (ROF)
variational problem,

u* = argmin, Fror(u) (1)

where
Fror(u) E/ |Vu|dx+)\/ lu — f|*dx (2)
Q Q

is compellingly simple, yet closely connected to the deep theory that has de-
veloped around functions of bounded variation. (A function u € L'(Q) is said
to be a function of bounded variation if fQ |Vul|dz, appropriately interpreted,
is finite.) The feature that stood out in ROF minimizers was edge preserva-
tion — in many cases edge locations were perfectly preserved even while the
noise was reduced or removed altogether. Chan and Esedoglu [6] introduced
an analogous total variation regularization with L! data fidelity:

Fop(u) :/Q|Vu|dx+)\/glu—f|dx (3)

In their beautifully clear paper they establish many useful properties of this
closely related functional. Earlier work by Alliney [4] and by Nikolova [14]
contained very nice studies of various aspects of the discrete versions of this
functional. Because Chan and Esedoglu first introduced the continuous version
and were the first to make an in-depth study of its properties, we will refer to
this functional as either the L'TV or the Chan-Esedoglu (CE) functional.

Later work by Allard [1, 2, 3] used rather deep tools from geometric measure
theory, developed originally to study minimal surface regularity properties for
a family of functionals that includes both the ROF and CE functionals. Work
by Vixie [16] used simpler notions from geometric measure theory to establish
some properties of exact solutions to the CE functional.

In 2007, Morgan and Vixie [13] realized that the CE functional was in fact
equivalent to the flat norm from geometric measure theory. This immediately
suggested using L'TV algorithms for the computation of both the flat norm
and the flat norm decomposition. It further suggested simple but very useful
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generalizations of both the flat norm and the CE functional, both of which
would be valuable for work on shapes and images.

In this paper, we will show by example some of the implications of the
connection between the flat norm and the CE functional. In particular, we
will explore the multiscale flat norm signatures and their use in shape analysis
tasks.

2 The Flat Norm and Flat Norm Signature

In this section, xg denotes the characteristic function on E, i.e. xg(x) =1 for
x € F and xg(x) =0 for € E. In the case that the input u is binary, Chan
and Esedoglu observed that the CE functional reduces to

Fep(3,)) = Per(Z) + A|Z 4 Q. (4)

where ¥ is the support of the input u = yy, Per(X) is the perimeter of the
set 3, A denotes the symmetric difference, and €2 is the support of the binary
data f = xq. We will define

() = arnginFCE(E, A). (5)

Note that we are now explicitly tracking the dependence on A and that we will
sometimes use FgE to indicate the dependence of Fog on ).
The flat norm with scale A, F\(T') of an oriented 1-dimensional set T is
given by
F\(T) = mSin{Vl(T —05)+ AV,(9)} (6)

where S varies over 2-dimensional regions, V7 is 1-dimensional volume (length)
and V3 is 2-dimensional volume (area). We refer to {7, S} as the flat norm
induced, optimal decomposition. From [13] we have

Theorem 1. The flat norm of 02 equals the minimal value of CE functional
with data Q): that is

and

{09, 2(N\) A Q} (8)
s an optimal decomposition that the flat norm with scale requires.

We note that we have glossed over details such as what we mean by 0f2,
the boundary of Q (for nice enough sets it is simply the usual topological
boundary) and other fine points. References for this material include Frank
Morgan’s introduction to geometric measure theory [12] as well as the books
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by Evans and Gariepy [8], and Federer [9]. We recommend that you start by
looking at Morgan’s introduction.
Finally, the three flat norm signatures f., fimps and fg are defined by

fe(A) = FA(0Q) = Fop(E(A), A) (9)
and the decomposition of f.(A) into fimes(A) and fs(A) through

Je(A) = Fomns(A) + Afs(A) (10)
where finps(A) = V1(0Q—0(X(A) A Q) = Per(3())) and fs(A) = Va(E(A) A
Q) = Js a0 1do.

3 Graph Cuts for CE computation

Kolmogorov and Zabih’s paper in 2004 [11] (see also the 2001 paper by Boykov,
Veksler, and Zabih [5]) introduced graph cut methods for solving variational
problems. Implementations for image analysis functionals are a natural appli-
cation, see Darbon and Siegle [7] and Goldfarb and Yin [10].

The essential idea is to represent a functional minimization problem as an
equivalent minimum graph cut problem. A simple one dimensional example is
shown in Figure 1. The image is a characteristic function of eight pixels where
0-1 intensities are indicated by gray-white shading. The graph is constructed
by first associating each pixel with a node. Then graph edges are added be-
tween nodes whose corresponding image pixels are neighbors in image space,
and each edge is given unit weight. Next, we add a source node (s) and a sink
node (t) with connecting edges of weight A to each white or gray pixel node,
respectively.

Figure 1: Tllustration of a graph cut for a 1-dimensional image.

The capacity of any cut on this graph is equal to the value of F) for a
particular region S. In the graph, S corresponds to the set of all nodes n for
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which either the edge (n, s) or (n,t) is in the cut. For instance, in Figure 1 the
solid blue line illustrates a cut for which S = {7}. Cutting (s, 7) reduces the
s-t flow by A, which corresponds to the AV3(S) in Equation 6. Any cut also
incurs a penalty equal to the number of times the cutting line passes between
image nodes. This penalty is equal to the term V(T — 9S) in Equation 6.
Thus, finding a cut with minimimal capacity is equivalent to computing the
flat norm.

It is straightforward to extend this method to two or more dimensions. In
our work on characteristic functions represented as binary images on regularly
spaced pixels we consider graphs constructed using the 16 neighbor scenario
illustrated in Figure 2. The use of nearest (black), next-nearest (red) and
fourth-nearest (blue) neighbors yields a better (anisotropic) approximation of
the gradient due to the high density of sampling directions relative to simple
nearest neighbor computations.

Optimal weights for the graph edges are determined by minimizing gradient
computation error on known functions. Let gy : R> — R be the linear function
whose gradient everywhere is Vgg = (cosf, sinf)”. Also let v; be the 16 vectors
quantifying the image-space neighbor positions. For example, if the image grid
is of unit spacing then v; = (0,1)7, vs = (1,1)7, vg = (1,2)7, etc. We choose
three edge weights w* = (w}, w3, w})?, corresponding to the three types of
neighbors in Figure 2, which best approximate Vg, for all 6:

w

2
w* = argmin/ (h(w,0) —1)*d, (11)
0

where

4
h(w,0) = > wi|Vgy- vl
j=1
8
+ ng\Vgg-vj\ (12)
=5

16
+ Zw3|V90 - 5]
=9

The three terms in Equation 12 are the nearest, next-nearest and fourth-
nearest neighbor terms, respectively. Equation 11 is solved analytically, though
the full expression is cumbersome and not reproduced here. We find w* ~
(0.1221,0.0476,0.0454)". Crofton’s formula can be used to suggest 16-neighbor
weights of w* = (7/24,7/(24v/2),7/(48v/5))" ~ (0.1309,0.0926,0.0293)".
These weights give slightly less accurate approximations of both the magni-
tude of the gradient |Vu| and the total variation or perimeter term [, |Vu|dx
used in Equation 3.
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Figure 2: Neigborhood used for 16-neighbor approximation.

We use a graph cut algorithm for CE minimization written by Wotao Yin
to calculate minimizers and minimal values from which we extract the sig-
natures and decompositions. The efficiency of the graph cut algorithms was
the deciding factor in our choice to use them for the calculation of the CE
minimizers.

4 Shapes and shape signatures

We next demonstrate that the flat norm signature can be used as an effec-
tive scale-dependent tool in image classification and recognition. For example,
suppose we are given a collection of shapes and wish to provide similarity
groupings. We will show that (using the multi-scale flat norm) we can extract
features of these shapes and, after processing, cluster them appropriately. Sim-
ilar shapes can then be easily classified based on the clustering of the prior
training data.

Fork 4 Fork 16 Spoon 10

Figure 3: Sample of images to compare. See Appendix for a full list of images
used.

We want our classification to be invariant with respect to the scaling of each
image, so we normalize our signatures. We would like each image to be scaled
so that the area of the shape is 1. If we do not scale the images, signatures of
differently sized but otherwise identical images will not match as they should
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for our clustering application. We illustrate this in the appendix using the clip
art image of fork 4 shown in Figure 3.

Let ® denote the linear map that scales distances between points by ¢,
so that a scaling of the image () is represented by ®€). Rather than scale
the image itself, we can choose a sequence \* that will give us a signature
Fy-(09€) that can be scaled to match the signature [ (0€2) of the normalized
shape.

Substituting 9 = T into equation 6, we have

Fy- (009) = min{ V1 (92 — 98S) + A"V5(P5)}

= mSin{¢V1(8Q —08) + \*¢*V,(9)}

= ¢F(09),

where A = A\*¢. Thus, letting f7, f&, f.,s denote the signatures of ®€, the
following equations give the normalized signatures:

feN) = ofe(oA") (13)
fE(N) = 6" fs(pN") (14)
f;mbs()‘*) = ¢ftmbs(¢)‘*)' (15)

We begin with a collection of 24 mixed fork and spoon images (Figure 3).
We then calculate the normalized multi-scale flat norm of each image for a
sequence of \ values. In Figure 4, we plot signatures for the mass of S. We
note that these signatures are always monotonic and that there are abrupt
jumps in the signatures. To gain a sense of this, we can examine an image at
several selected A\ values and see progressively larger radius features absorbed
into the mass of S (Figure 5).

——Fork 4 1
-2 -Fork 16 ! \
0.8/L——Spoon 10 |

mass of S

Figure 4: Signatures of S for sample images.
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A =4.7597 A =0.19832
A =0.12864 A =0.12204

o ®

Figure 5: Fork 4 at different A values.

We can analyze the signature information by graphing the discrete deriva-
tive graph or spectrum of the mass of S (Figure 6). Here, spikes represent in-
creases in the mass of S. The location of a spike relates to feature scale, while
the magnitude of a spike represents how significant that feature is. Spectra

with similar spikes (in both location and magnitude) share important feature
similarities.

——Fork 4
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0.8l ——Spoon 10 z‘>
|
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i \
;HT |
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1/A
Figure 6: Spectra of S for sample images.

If we attempt to directly cluster this data in a high-dimensional space
(R™ where m is the number of X values), spikes that do not directly overlap
will not be considered close (under a Euclidean metric) regardless of their
position along the spectrum. However, it is natural to expect that features at
similar scales are significant from an image similarity standpoint. We achieve
this similarity by convolving the raw spectra with a Gaussian distribution
of width parameter o equal to the desired similarity scale. The smoothed
example spectra are shown in Figure 7. Smoothed spectra of each of seven
representative fork and spoon images is shown in Figure 8.

Clustering in R™ gains more meaning now, but there are two challenges.
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Figure 7: Smoothed spectra of S for sample images. o = 1.
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Figure 8: Smoothed spectra for 7 forks and spoons. o = 1.
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First, many dimensions add no critical information to distinguish between the
shapes. Second, it is impossible to visualize the data. We solve both problems
by using the singular value decomposition on the matrix of data vectors. Fig-
ure 9 shows the data projected onto the subspace spanned by the two most
significant singular vectors. Ideally we would see a simple separation of the
data into two groups. After this training separation, we can take new im-
ages, perform the operations described above, project onto the same subspace,
and classify each new image based on the previous grouping. In the present
example, sufficiently accurate spoon-fork classification is accomplished using
projection onto only the first singular vector.

6§ o
a %o O Training Fork
% Training Spoon
00 g Sp
2 B New Fork
* New Spoon
o 8
2 O *
on o " X x
4 x T
7iy) Xk x
6 O o
-8-
8 6 -4 2 0

Figure 9: Smoothing ¢ = 1. Training fork and spoon data, projected onto
the space spanned by the two most significant singular vectors. New fork and
spoon data, projected onto the same vectors separate nicely.

As discussed earlier, up to the anisotropic approximation used in the graph-
cut methods, the multi-scale flat norm is invariant under translations and ro-
tations. For some image processing, this is highly desirable.

A potential problem is caused when shape boundaries exist very near the
image sides. This rises from the Neumann boundary conditions used in the
graphcut calculations and can easily be fixed by padding the image before
calculating the signatures.
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6 Appendix

6.1 Samples used for image classification

Y Oror o~ vt Y 0 r ¥y
1 2 3 4 5 6 7 8 10
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Figure 10: Fork images used in examples. Images 1-15 were used for training,
and images 16-20 were tested.

spoon

INSN Ll NN 2=

Figure 11: Spoon images used in examples. Images 1-9 were used for training,
and images 10-12 were tested.

6.2 Signature normalization example

S

Figure 12: Fork 4 image for normalization example

Figure 13 shows graphs of the mass of S from the flat norm with scale
defined in equation 6 for fork image number 4 and for the same image doubled
in size. For our classification application, the signatures of scaled versions of
the same image must match.
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Figure 13: Fork 4 S-signatures for different sized fork 4 images.

Given a sample image {2 of area a, we want the area of ®¢) to be 1, so
let ¢ = y/1/a. Figure 14 shows graphs of signatures ¢—2f% from equation 14

which align over the A*-axis as they should, and Figure 15 shows normalized
signatures f¢.
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Figure 14: A-normalized, unscaled fork 4 S-signatures.

Received: June, 2009



680 K. R. Vixie et al

1 -
800x600 fork
1600x1200 fork
" 0.8
©
[}
@ 067
1S
k=)
&
= 0.4}
£
o]
c
0.2}

0038 005 0071 0125 05
Ny

Figure 15: Normalized fork 4 S-signatures.



