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Merit Functions
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and Experiments
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Introduction

Comparison of experiments with simulations is at the 
heart of progress in physics. Experiments are required 
to validate models, and simulations based on those 
models can be used to explore new physical regimes 
and define interesting experiments. Significant prog-
ress, however, is intimately tied to the way in which 
the “comparison” between experiment and simulation 
is carried out. The procedure has been largely a mat-
ter of personal preference, and familiarity with a cer-
tain analytical technique has often been the criterion 
for the selection of that technique. The complexity of 
the problem suggests that this eclectic approach is 
here to stay, but the complexity also demands a better 
understanding of what constitutes a meaningful com-
parison. 

In this article, we discuss and then illustrate the follow-
ing common-sense criteria for developing and judging 
comparison metrics: First, a good metric will ignore 
differences that don’t matter and quantify important 
differences. Second, prior knowledge of the physics 
details should be incorporated into any analysis. Third, 
knowledge of the measurement operator, which is es-
sentially a mathematical description of the experiment, 
should be exploited. Finally, because precise imple-
mentation of these criteria is typically too difficult, the 

comparison metrics should be created under the influ-
ence of these ideal requirements, and the ways in 
which they fall short should be indicated and under-
stood. Our specific approach, illustrated below, is to 
develop defensible metrics1 based on merit functions, 
rigorously understood priors, and sensible measure-
ment models that, together, capture what is impor-
tant, what is known, and how measurements relate to 
reality. 

The defensible metric approach does not guarantee an 
easy solution to the comparison problem. However, 
because it (1) makes explicit the parameter space of 
the model, (2) distinguishes between model- and mea-
surement-induced differences resulting from a com-
parison of simulation and experiment, and (3) measures 
only differences that matter (via the merit functions), 
our comparison metrics avoid the pitfalls of many stan-
dard approaches. One common approach is the “eye-
ball” metric (the researcher decides that the simulated 
results do or do not ‘look’ like the data); another is 
some form of difference metric in which the plots or 
images of the simulated data are subtracted pixel by 
pixel from corresponding images of the experimental 
data and various Lp norms of those differences are 
computed. The various norms are quantitative, yet it is 
often not clear that they quantify something of inter-
est. For example, equation-of-state parameters are 
not easily associated with full-image norms, and pixel-
to-pixel differences are not easily related to the differ-
ences in physics the two different images represent. 
An example of a slightly more careful approach is the 
study of how the norms of image differences scale 
with grid size of the simulation and with experimental 
parameters. One might also look at regions of high 
pixel difference and make informed guesses about 

why the experiment and simulation differ in these re-
gions. Often though, these common methods are 
poorly connected to any sort of quantifiable conclu-
sion. In contrast to these common methods, the de-
fensible metric/merit function approach, which includes 
priors based on rigorous knowledge of the relevant 
state space, makes our comparison metrics quantifi-
ably informative.  

The Path to Defensible Metrics and  
Merit Functions

As stated above, we believe that defensible compari-
son metrics are objective measures that not only use 
prior information and knowledge of the measurement 
operator, but quite importantly, also quantify only 
those differences that matter. 

A key concept for quantifying differences of interest, 
namely, the merit function, is illustrated in Figure 1, 
along with the state space of a system U, the measure-
ment space D, and the merit function space K. While 
the concept of a merit function is general to data anal-
ysis problems, we will refer to concrete examples in 
explaining the various abstract functions and spaces in 
Figure 1. The state space U is the space describing 
some object or situation we are interested in interpret-
ing. It is typically the very high dimensional description 
of a physical situation. A given state u could be the 
space and time concentrations of a multiple-constitu-
ent chemical reaction or the material and density de-
scription of a human leg. The state space cannot be 
directly probed. A particular state is given by a simula-
tion or model us, or it is inferred through observables. 
Observables d lie in the measurement space D. This 
space of observables is typically of lower dimension 
than the state space. In the chemical reaction exam-
ple, d may be spectroscopy and temperature measure-
ments. In the human leg example, d may be external 
geometry measurements and x-ray radiographs. The 
measurement operator P is the physical description of 
an experiment (or simulation) that connects states 
with obervables, d = Pu. In our examples, P is the de-
scriptor of the spectroscopy or radiography process. 
Often, however, we are not interested in knowing the 

1 We use the term metric more loosely than the usual math-
ematically precise definition requires. Typically, we use the 
term for something that is coercive with respect to some 
norm (we might also have to go to some appropriate quotient 
space) and positive. So it does give a sense for how close two 
inputs are, though it might not, for example, satisfy the tri-
angle inequality. By coercive, we mean that the metric ρ sat-
isfies ρ (u1,u2)→ ∞ as || u1 – u2|| → ∞ , where || ∙ || is some 
typical norm on U.
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entire state u given the observables d. Instead, we are 
interested in the answers to a few very specific ques-
tions. The answers to these questions lie in the merit 
function space K. (We will later mathematically identify 
K as a quotient space of U.) Specific answers k could 
be the final volume fraction of lithium triflate in our 
chemically reacting system or the likelihood of a per-
son suffering from leukemia in the next 10 years. The 
merit function f associates every point (state) u in U 
with an answer k = f(u) in K. In each space, we also 
need to know the metrics that quantify “distances” be-
tween points. The metric ρK(k) in the merit function 
space quantifies how well we have answered our im-

portant questions. Constructing this metric is often the 
easy part. Now, within this picture, we can restate our 
goal: We seek to construct metrics in the state space 
and/or data space, ρU(u) and ρD(d), respectively, that 
accurately reflect ρK(k). Success in achieving this goal 
is intimately tied to understanding the merit function f, 
the measurement operator P, and the relationship be-
tween ρU and ρK.

A Probabilistic Approach Gives 
a Coherent Framework

Our viewpoint permits us to develop good comparison 
metrics, but in order to more fully motivate and justify 
this approach, we show how these metrics can be em-
bedded or understood within a standard (Bayesian) 
probabilistic framework. 

We begin by considering how one might measure the 
quality of a particular simulation in the probabilistic 
sense (that is, how typical the simulation is). Later we 
will modify our result in a rather nonstandard way to 
get a measure of how good the simulation is relative to 
a merit function. 

We now assume that we are given a simulated state us 
and an experimental measurement d. We do not di-
rectly know the experimental state ue. The most likely 
state u* is that which maximizes the posterior, or con-
ditional probability, of ue given us and d: 

u*≅ max p(ue|d,us) 
 ue 

    ~ max p(d|ue,us)p(us|ue)p(ue)  (1) 
 ue 

    ~ max p(d|ue)p(us|ue)p(ue) . 
 ue 

Equivalently, we could minimize the negative logarithm 
of the conditional probability:

u*≅ min[-log p(ue|d,us)]   (2) 
 ue 

    = min[-log p(d|ue)-log p(us|ue)-log p(ue)] . 
 ue 

From the point of view of metrics, we can identify the 
three negative log likelihood terms as metrics and then 
find the state that minimizes the sum of those met-
rics: 

u*= min[ρdf(d,ue)+ ρs(us,ue)+ ρprior(ue)] , 
 ue

         (3)

where –log(d | ue) = ρdf(d,ue) is called a data fidelity 
metric and involves some approximation to the mea-
surement operator P, as well as assumptions about the 
stochastic nature of data itself, –log p(ue) = ρprior(ue) is 
typically a smoothing or regularization term that re-
flects our prior knowledge about the nature of the ex-
perimental state, and –log p(us | ue) = ρs(us, ue) is a 
stochastically inspired metric on the state space of the 
simulations and experiments (equivalent to the space 
U in Figure 1).

Our Modification. Since our intent is to evaluate the 
simulation, we do not want the simulation to influence 
our choice of the most probable experimental state. 
Therefore, we first find the state that minimizes the 
sum of the first and third terms, 

u*= min[ρdf(d,ue)+ ρprior(ue)] ,  (4) 
 ue

and then use the stochastically inspired state-space 
metric –log p(us | ue) = ρs(us, ue) to understand differ-
ences in proposed models since the different models 
will yield different states us. 

We now modify this standard probabilistic framework 
by replacing the stochastically inspired state-space 
metric, –log p(us | ue) = ρs(us, ue), with a merit-func-
tion-inspired metric, ρU(u1, u2). Ideally, the latter is di-
rectly related to the merit function metric through the 

Figure 1. In a general picture, physical descriptions u, data d, and 
analysis results k are represented as points in state U, measure-
ment D, and merit function K spaces, respectively. The measure-
ment and state spaces are generally thought of as being connected 
through a measurement operator P (an experiment or its model 
description). The merit function f seeks to provide a result of in-
terest, k = f(u). Metrics in K are simple to construct. Careful data 
analysis hinges on constructing metrics in U and D that reflect 
understanding of metrics on K.
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relationship ρU(u1, u2) = ρK(f(u1), f(u2)). The result is a 
metric that explicitly ignores differences that don’t 
matter according to the merit function.2 However, be-
cause such a metric is often difficult to compute, we 
must seek approximations. 

With this substitution for the state space metric, we 
are making comparisons that explicitly relate to the 
goal of our prediction as encoded in the values of the 
merit function. What do we lose or gain by this substi-
tution? There are two cases to consider. In the first, 
the instabilities or the stochastic nature of the experi-
ment makes the stochastically based metric ρs(us, ue) 
small when the merit-function-based metric ρU(us, ue) 
is large. That situation means that either the instabili-
ties in nature make predicting ue difficult or that the 
model we are using has a very difficult time making 
the right prediction of k. In the second case, ρs(us, ue) 
is large when ρU(us, ue) is small, which implies that the 
model and experiment have serious differences 
(viewed from the state space), but that, when viewed 
from the merit function point of view, they are in good 
agreement. In either case, the size of the metric ρU(us, 
ue) is telling us much of what we wanted to know: How 
good is this simulation at predicting k? The only defi-
ciency is the fact that, in the first case above, we will 
not know whether only this model or all models have 
difficulty predicting k. 

Metrics and Regularization: Illustrative Exam-
ples

In the remainder of this article, we illustrate two ele-
ments of the picture outlined above, (1) the creation 
and use of likelihoods or metrics that are based on 
merit functions and (2) prior models in the form of 
regularization terms that correctly reflect the state 
space of interest. In particular, we use a face recogni-
tion problem to illustrate the building of a merit func-
tion f, based on a given metric ρK, that attempts to 

ignore unimportant state-space differences. Second, 
we use Abel inversion tomography to illustrate the use 
of a nonstandard regularization term, or prior, in the 
inversion of the measurement operator P.

Face Recognition: Classification Modulo Invari-
ance. The classic face recognition problem is to iden-
tify a person from an image of the face by comparison 
with a database of images of known persons. While 
simply stated, the task is very difficult to perform ac-
curately. First, images must be standardized for light-
ing differences, shifts, rotations, and scalings (that is, 
those features that, in principle, are independent of 
the subject). Then one must try and account for 
changes beyond the control of the photographer such 
as pose, expression, and grooming. It is not hard to 
imagine why simple metrics can fail to capture the es-
sential features of an image relevant for subject iden-
tification. If one were to create a metric based on 
difference images (for example, Lp norms), identifica-
tion results would tend toward matching exactly those 
unimportant features listed above. For example, the 
image of a laughing man could easily be most closely 
associated with database images showing a laughing 
person, rather than images of the same man with a 
different expression, leading to an incorrect identifica-
tion. Such a metric is very bad at ignoring differences 
that do not matter (in this case, facial expression). The 
concept of a better metric is illustrated in Figure 2. All 
possible face images of a particular person lie in the 
same class. All images u within a class should project, 
via the merit function f, to the same value k (in this 
example k is an identification). Mathematicians call K a 
quotient space. A good state-space metric ρU will ig-
nore distances within a class. In the high-dimensional 
space in which images live, the submanifolds of per-
sons can be expected to be highly convoluted, and 
metrics must be constructed with care. The task is to 
construct an image-space metric ρU using a properly 
designed merit function f that maps to our well-de-
fined quotient-space metric ρK. 

Many methods are available for face recognition, and 
the difficulty of the problem, together with its impor-
tance in security applications, guarantees that it will 
remain important. One popular and intellectually satis-

fying method is based on eigenfaces. It was intro-
duced by Kirby and Sirovich (1990) and then popularized 
by Turk and Pentland (1991). We cannot present here 
an overview of methods. However, it is important for 
us to compare results of our new techniques with 
those of several others. For this comparison, we will 
utilize the Colorado State University (CSU) face image 
database and 13 algorithms (http://www.cs.colostate.
edu/evalfacerec). The particular method that inspired 
the current work is that of Simard et al. (1998, 2000), 
in which tangent spaces were used to locally approxi-
mate class submanifolds in U. 

We chose to test our ideas by constructing a metric 
that attempts to ignore image scaling, rotation, and 
shifts. The face images equivalent under these trans-
formations form (roughly speaking) five-dimensional, 

Figure 2. This figure illustrates a typical state space (at left) in which 
there are submanifolds of equivalent points relative to some merit 
function. Equivalently, we can think of these as the level sets of the 
merit function. Differences between points on the same submanifold 
are not important. Ideally, we would like to build a metric on the quo-
tient space (at right) that replaces each submanifold with a point. In 
this illustration, we see that, before we take the quotient, it appears 
that example 1 of class 2 and example 2 of class 1 are much closer 
together than example 1 of class 1 and example 2 of class 1. After 
the quotient, we see that this difficulty disappears.

Example 2 of class 1

Example 1 of class 2

Example 1 of class 1

k

N−k N

Invariant leaves    R∼

  R            R    mod {invariant leaves}∼

2 In mathematical terms, we care only about what our model 
does in the quotient space F, where F is the collection of 
level sets of f (the possibly singular foliation given by f –1(k) 
as k ranges over R).
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highly curved, nonlinear submanifolds of the space of 
all images. This feature appears to render impractical 
a direct computation of the quotient f(u). So, instead, 
we computed local tangent approximations that we 
then used to make local modifications to a global met-
ric, thereby incorporating the quotient information in 
an approximate way (refer to Figure 3). We used sec-
ond-order information to adjust the region of modifica-
tion. The more highly curved the manifold in that 
region (or the larger the second derivative), the small-
er the region of validity of the local approximation. 

The CSU face image database consists of 4 images 
each of 160 individuals. For each classification, we ran-
domly select a test face image of the target person. 
We then create a comparison image set composed of 
159 randomly chosen images from the database, to-
gether with one additional image of the target person. 
The algorithm then chooses the face image in the 
comparison set closest to the test image according to 
the algorithm metric ρU. This basic test was repeated 
160 times in order to calculate an average percent rec-

ognition success rate. Then the recognition rate 
was calculated 10,000 times for each algorithm to 
provide a recognition rate distribution. These distri-
butions are shown in Figure 4 for each of the 13 
CSU algorithms and three variants of our new meth-
od. Our new methods outperform all previous meth-
ods. They utilize approximate metrics that best 
ignore image differences that do not matter for face 
identification. It is important to note that the con-
cepts and algorithms are not specific to face recog-
nition. The algorithms were developed for general 
data comparisons. Full details can be found in Fra-
ser et al. (2003).

Total Variation Regularized Abel Inversion. 
Understanding data from sparse radiography of fast 
events is important to the solution of problems cen-
tral to the mission of the Laboratory. The sparsity of 
the radiographic data is a result of the combination 
of fast measurements, thick objects, and the very 
high expense of building additional viewing angles 
into the measurement apparatus. Much of our data 

is single-angle data. This restriction limits the radio-
graphic reconstruction method to the inversion of the 
Abel projection, which assumes the object is cylindri-
cally symmetric.3  While such experiments are de-
signed to make this assumption very nearly correct, 
rapid time evolution of the objects under study often 
introduces nonsymmetrical effects.4 But even when 
symmetry is not in question, noisy data can make a 
good inversion difficult. Though the Abel projection is 
invertible, a typical discretization of the projection 
yields a condition number on the order of 103 (the con-
dition number represents the magnitude of potential 
noise magnification), which is bad enough for noisy 
data to yield nonsense results under the Abel inver-
sion. This unwelcome result is addressed by introduc-
ing regularization. As shown in Equation (5), the usual 
method minimizes the sum of two terms: a regulariza-
tion metric (or prior), consisting of the integral of the 
squared gradient (first term), which favors smooth 
states, and a standard data-fidelity metric (second 
term):

urecon= min(∫|∇u|2dΩ+λ∫|Pu-d|2dΩ) (5) 
    u  

This standard formulation for the Abel inversion is 
equivalent to the probabilistic formulation (Equation 3) 
presented in the last section except that no simula-
tions are involved, and so the state space metric is not 
needed. Also note that the standard data fidelity met-

Figure 3. Green ellipses schematically represent level curves of a global 
metric distance to three individual example face images µn. Blue curves 
represent submanifolds of equivalent face images (same individual), 
along which a perfect metric would return zero distance. Clearly, the 
global metric does not capture the submanifold structure. Tangent ap-
proximations (red lines) give us local approximations to the submani-
folds that we use to locally modify the global metric.
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Figure 4. Shown here are face recognition probability results for 13 
algorithms in the CSU database (leftmost curves) and our three new 
methods based on tangent approximations (rightmost three curves). 
As explained in the text, the three new methods outperform all previ-
ous methods. 
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3 Actually, there is a whole host of similar assumptions that will 
yield invertability. All these assumptions boil down to the exis-
tence of a two-dimensional (2-D) parameterization of a three-
dimensional (3-D) object. The 2-D Abel projection maps a 
density distribution ω(r), which is constant on concentric circles 
(and is therefore a function of the radius r), to a function g(r) 
whose value equals the line integral along a line that is at a 
distance r from the center.

4 In some experiments, single-angle data are measured at mul-
tiple times (in sequence), and for these we can begin to make 
up for the data sparsity through variational approaches (Asaki 
et al. 2004).
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ric assumes that the operator P models the measure-
ment and the noise is Gaussian and additive (a fair 
approximation for many applications). 

It turns out that the total variation (TV) seminorm is a 
better choice of regularization for many common ap-
plications. The use of this seminorm for regularization 
of image reconstructions was introduced in the Rudin, 
Osher, and Fatemi (1992) variational model: 

urecon= min(∫|∇u|dΩ+λ∫|Pu-d|2dΩ) (6) 
    u  

In addition to a large amount of intriguing and beauti-
ful theory to be explored, this and similar functionals 
are big improvements on previously used methods for 
certain applications. We have recently introduced TV 
regularization to the Abel inversion, and the results are 
quite encouraging (Asaki et al., in preparation). At the 
root of this improvement is the fact that, unlike the 
|∇u|2 gradient prior, the TV prior does not cause bias 
against objects (states) with discontinuities in density 
and is therefore a better match to objects with edges 
(Asaki and Vixie 2004, Evans and Gariepy 1999). 

Results on a test simulation can be seen in Figure 5. 
These results were obtained for a single two-dimen-
sional (2-D) slice of a cylindrically symmetric object, 
which is therefore parametrically one-dimensional 
(1-D). The object is exactly described by 200 density 
rings of equal width. The density profile is shown in 
Figure 5a. The data shown in Figure 5b is the 1-D mass 
projection of the 2-D object with additive Gaussian 
noise (variance 5% of the noiseless data maximum). 
The remaining subfigures show the results of four re-
construction methods: (c) the nonregularized Abel in-
version (an expected disaster); (d) |∇u|2 regularized; 
(e) TV regularized; and (f) adaptive TV regularized. 
The last method iteratively locates edges using strong-
ly TV-regularized reconstructions and then finalizes 
the inversion with a stronger smoothing term off these 
edges. The advantage in using the TV regularizer is 
clear in these examples. Development of these meth-

ods is continuing, and they are being brought to bear 
on difficult programmatic, mission-critical data analy-
sis problems in two and three dimensions. 

Looking Ahead

The path to defensible simulation validation is clearly 
not a simple one, yet we believe that our goal is achiev-
able. We have set forth a broad picture in which to 
frame the questions and analyze the answers. And we 
have shown how the ideas of merit-function-based 
metrics play out in some simple examples. But the job 
is far from complete, and there remains much to un-
derstand. 

We believe that there are many valuable exploration 
paths. Much can be accomplished quickly using inno-
vative physics-driven regularizations and careful data 
fidelity metrics. Code parameter optimization might be 
efficiently managed using cost-function-based image 
registration methods. Images can be analyzed using 
detailed statistical projections and information diver-
gences. But all these diverse techniques fall within the 
picture we have presented here. And all rely on the 
philosophy that defensible comparisons demand (1) a 
firm grounding in rigorous (often geometric) analysis 
and (2) metrics incorporating knowledge of what does 
and doesn’t matter.

Figure 5. The importance of using an appropriate regularization 
is illustrated in this example of Abel inversion reconstructions of 
a cylindrically symmetric object. Individual plots show (a) the ini-
tial density profile, (b) projection data with added noise, and four 
reconstruction results: (c) nonregularized, (d) |∇u|2 regularized, 
(e) |∇u| (TV) regularized, and (f) adaptive TV regularized.

(a) (b)

(c) (d)

(e) (f)
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