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Abstract. Template matching is the search for a known object, represented by a template image,
at an arbitrary location within a larger image. The local measure of match is often desired to be
invariant to certain transforms, such as rotation and dilation, of the template. While a variety of
solutions have been proposed, most are designed to provide invariance to a specific transform or set
of transforms, and often involve significant computational demands. When invariance to “small”
transformations of the template (e.g. rotation by a small angle) is sufficient, local linear approxi-
mations to these transforms may be used to allow template matching with invariance to arbitrary
transforms, without significantly increased computational requirements. c© 2006 Society of Photo-
Optical Instrumentation Engineers. DOI: 10.0000/XXXX
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1 Introduction

Template matching is the location of a known object within an image by computing a measure of
match between a template representing the object to be located, and all template-sized subregions of
the image of interest [1, pp. 400-404] [2, pp. 651-653]. The measure of match is computed at every
point in the image to construct the match surface, as indicated in Figure 1. Template matching is
related to matched filters, which are optimal for detecting a deterministic signal with additive white
noise, when the measure of match is correlation based.

Template

Image

Vectorise

u

v
ρ(u, v)

Match surface

Template-sized image block

Vectorise

Fig. 1 Computing the match surface for measure of match ρ(u,v).

Consider vectors u and v representing a template and an image block respectively (the vector
representation being constructed, for example, by a raster-scan of the image block), and define the
mean-subtracting projection

Ru = u− 〈u,1〉
〈1,1〉

1,

where 1 is a vector of unit components, so that the correlation coefficient (the cosine of the angle
between u and v after subtraction of their means) may be written as

ρcor(u,v) =
〈Ru, Rv〉
‖Ru‖ ‖Rv‖

.

This widely used measure of match is invariant to scaling and level shifts of pixel values.
Direct computation of the correlation surface (the match surface with a correlation-based mea-

sure of match) is computationally expensive. An efficient implementation can be derived by noting
that the inner product between a template and each position in an image can be expressed as the
convolution of the vertically and horizontally flipped template and the image. Once expressed as a
convolution, the DFT convolution theorem allows the use of FFTs to implement the convolutions
efficiently.3
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In most applications, one would like to detect occurrences of the template subject to certain
transforms, in particular, rotation and scaling. A wide variety of techniques for rotation and scale
invariant template matching have been considered, the two main types being based on the Fourier-
Mellin transform4 and on invariant moments.5 Most of these methods are designed for invariance
with respect to a specific small set of transforms, and many are significantly more computationally
expensive than simple correlation-based template matching.

An alternative strategy, which leads to a very general method suitable for arbitrary transforms,
is motivated by considering the manifold, in the vector space of template images, generated by the
application of the transform(s) of interest to the primary template. Invariant matching may then
be achieved, in principle, by determining whether an image block lies within this manifold. Since
the difficulty of appropriately representing a general manifold makes direct application of this idea
impractical, it is necessary to approximate the manifold by a linear subspace. Given this approxi-
mation, one may easily determine whether an image block lies within the subspace by projecting it
into that subspace and comparing with the original image block. Computational efficiency is ach-
ieved by constructing an orthonormal basis of templates for the linear subspace; the projection and
measure of match may then be computed in terms of the correlation between the image and each of
the basis templates, so that the computation expense is of the order of the number of basis templates
greater than the expense of matching with a single template. Uenohara and Kanade6 have described
such an approach in some detail, using the Karhunen-Loève Transform (KLT) to construct the or-
thonormal basis. (The basic idea of the KLT approach has also been considered in earlier work,7

and has been shown to be optimal in a matched filtering sense for a stochastic ensemble generated
by template distorting transforms.8, 9) We shall denote the correlation computed using this approach
by ρklt(·, ·).

2 Tangent Approximations to Invariances

While the general approach of Uenohara and Kanade6 may be applied for arbitrary transforms, they
only describe the case of rotation, constructing their template set by one degree rotations of the
primary template, and do not address the problem of the potential explosion of the template set size
when using multiple transforms. Instead of the KLT method for constructing the linear subspace
for matching, we propose a method inspired by the tangent distance classification technique of of
Simard et al..10 While inspired by this work (but more naturally presented as an alternative to the
work of Uenohara and Kanade,6 of which we became aware at a later stage), we emphasise that our
approach is not a trivial extension thereof; we use only the idea of tangent vectors to transforms,
and not the specific machinery for computing distances. Direct application of the tangent distance
is inappropriate for template matching since it is unnormalised, and is not invariant to scaling and
level shifts of pixel values. In addition, the solution of two sets of linear systems10 for every point
in the match surface represents an undesirable computational overhead.
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Instead of explicitly building a potentially large set of transformed templates, we restrict our
method to account for “small” transformations, so that a local linear approximation to these trans-
forms justifies using the tangent vectors to the transforms to construct the representative subspace.
First consider invariance with respect to a function f(u, α), where u is the (vectorised) image block
to which the transform is applied, and α is the single transform parameter (for example, angle of
rotation if f is a rotation transform). We assume that α = 0 gives the identity transform, so that
f(u, 0) = u. Expanding f in a Taylor series about α = 0, we obtain

f(u, α) = f(u, 0) +
∂f

∂α

∣∣∣∣
α=0

α +
∂2f

∂α2

∣∣∣∣
α=0

α2

2
+ . . . .

Defining

t(u) =
∂f(u, α)

∂α

∣∣∣∣
α=0

,

we may then write f(u, α) ≈ u + αt(u) for sufficiently small |α|. In general, we consider
a transformation f(u, α0, α1, . . . , αL−1) with multiple parameters, retaining the assumption that
f(u, 0, 0, . . . , 0) = u. In this case we define

tk(u) =
∂f(u, α0, α1, . . . αL−1)

∂αk

∣∣∣∣
α=0

k ∈ {0, 1, . . . , L− 1},

so that

f(u, α0, α1, . . . αL−1) ≈ u +
L−1∑
k=0

αktk(u)

for sufficiently small |αk|.
The linear combinations of u (we allow for scaling of the primary template) and the tangent

vectors tk(u) define a subspace within which small transformations of u may be approximated.10

Projection of an image block into this subspace therefore provides an indication of how well the
block may be approximated by a small transform of the template block. In particular, a template
matching measure of match that is invariant to small transforms can be defined as the correlation
between the projected and original image blocks. If the image block is indeed a small transform
of the template, the projection is an identity transform, and the correlation is unity; conversely, if
the correlation is significantly smaller than unity, the image block is poorly approximated in this
subspace, and is therefore not similar to a small transform of the template.

The projection into the subspace of template and tangent vectors is constructed using an or-
thonormal basis for this subspace. First, we construct the tangent vector set {tk(Ru)}k∈{0,1,...,L−1}.
Defining the projection orthogonal to both Ru and 1 as

Quv = Rv − 〈Rv, Ru〉
〈Ru, Ru〉

Ru,
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we orthogonalise and normalise the set {Qutk(Ru)}k∈{0,1,...,L−1}, labelling the resulting set {t̃k}k∈{0,1,...,L−1},
and define ũ = Ru

‖Ru‖ , providing us with the basis {ũ, t̃k}k∈{0,1,...,L−1} for the subspace of small
transformations of Ru. The projection of any image block v into this subspace is therefore

Pu,fv = 〈v, ũ〉ũ +
L−1∑
k=0

〈v, t̃k〉t̃k.

Using this notation, the invariant measure of match (described above) between image block v and
template u can be written ρcor(v, Pu,fv). Using the following equalities (v is an arbitrary vector)

〈Rv,1〉 = 〈Pu,fv,1〉 = 0 〈ũ, t̃k〉 = 0, ‖ũ‖ = ‖t̃k‖ = 1 ∀k ∈ {0, 1, . . . , L− 1}
RPu,fv = Pu,fv 〈Rv, Pu,fv〉 = 〈v, Pu,fv〉 ‖Pu,fv‖2 = 〈v, Pu,fv〉 = 〈v, ũ〉2 +

∑L−1
k=0 〈v, t̃k〉2,

one may easily derive that

ρcor(v, Pu,fv) =
‖Pu,fv‖
‖Rv‖

,

which may be interpreted as the fraction of the energy of Rv remaining after its projection into the
subspace spanned by the template and its corresponding tangent vectors.

Since this measure consists of a ratio of (positive) vector magnitudes, it does not distinguish
between positive and negative correlations. This deficiency is easily remedied by multiplying by
the sign of the inner product of v and ũ, leading to the definition

ρ0(u,v) = sgn(〈v, ũ〉)‖Pu,fv‖
‖Rv‖

= sgn(〈v, ũ〉)

√√√√〈v, ũ〉2 +
∑L−1

k=0 〈v, t̃k〉2

〈v,v〉 − 〈v,1〉2
〈1,1〉

,

where

sgn(x) =

{
−1 if x < 0

1 otherwise.

The correlation ρ0(u,v) provides an increased response when the image block v is similar to
the result of the specified small transformation f of the template u. It is clear, however, that it also
gives a significant response when the image block v is similar to one of the tangent vectors t̃k of
transformation f . This shortcoming is addressed by defining

ρ1(u,v) =
|〈v, ũ〉|
‖Pu,fv‖

=
|〈v, ũ〉|√

〈v, ũ〉2 +
∑L−1

k=0 〈v, t̃k〉

as a measure of the fraction of the energy of Pu,fv in the direction of the primary template. When
ρ0(u,v) is large, a large value of ρ1(u,v) ensures that the match indeed represents a small trans-
form of the primary template, and not one of the tangent vectors. Instead of a two-stage approach,
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checking ρ1(u,v) where ρ0(u,v) is large, we construct a hybrid measure of match based on both
ρ0(u,v) and ρ1(u,v). Since ρ0(u,v)ρ1(u,v) = ρcor(u,v) (see Appendix A) we define

ρtan(u,v) = ρ0(u,v)η(ρ1(u,v)),

where

η(x) =


x if x < t0(

1−t0
t1−t0

)
x +

(
t1−1
t1−t0

)
t0 if t0 ≤ x ≤ t1

1 if t1 < x

,

so that ρtan(u,v) is the standard ρcor(u,v) when ρ1(u,v) < t0, becomes ρ0(u,v) when ρ1(u,v) >

t1, and is interpolated between the two values when t0 ≤ ρ1(u,v) ≤ t1. In the experiments de-
scribed below, we set t0 = 0.25 and t1 = 0.50.

As discussed in Appendix B, construction of tangent vectors tk requires computing derivatives of
the templates. These derivatives are calculated by convolution of the template u with the derivatives
of a Gaussian kernel, which is equivalent to taking the derivatives of u after smoothing by convo-
lution with the same Gaussian kernel. This smoothing is essential to obtain stable estimates of the
derivatives since images containing sharp edges are, in principle, non-differentiable. Since the tan-
gent vectors are derived from a smoothed template, it is reasonable, for consistency, to apply the
same smoothing to the primary template, and similarly, to the image to be matched. In the results
presented here, we distinguish between those for unsmoothed correlations, in which the primary
template and image to be matched are not smoothed, but a smoothed version of the primary tem-
plate is used in computing the tangents, and smoothed correlations, in which smoothing is applied
to the primary template and image to be matched, in addition to the usual smoothing applied in the
tangent computation. For the ρtan correlation these unsmoothed and smoothed correlations corre-
spond respectively to the inconsistent (tangents correspond to a smoothed version of the template)
and consistent (tangents correspond to the actual template used) cases, but for correlations ρcor and
ρklt there is no such interpretation, since they do not require the use of tangent vectors computed
using smoothing.

3 Efficient Implementation

When used for template matching, the measures of match defined above need to be computed for
every template-sized block within the image to be matched. The most expensive component of
these computations is the evaluation of the inner products at every point in this image. The critical
observation leading to efficient implementation is that the inner product of a template with every
image block may be expressed as the convolution of the vertically and horizontally flipped template
with the whole image. The DFT convolution theorem allows this to be computed, using the FFT,
as the inverse DFT of the pointwise products of the DFTs of template and image respectively.3
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Assuming an N × N image, and an M × M template, with M � N so that the cost of the FFT
on the template is negligible, the resulting algorithm for computing the inner product at every point
has an O(N2 log2 N ) cost.

Now, noting that 〈Ru,1〉 = 0, so that 〈Ru, Rv〉 = 〈Ru,v〉, and expanding out ‖Rv‖ =√
〈Ru, Ru〉, we have

ρcor(u,v) =

〈
Ru
‖Ru‖ ,v

〉
√
〈v,v〉 − 〈v,1〉2

M2

,

the cost of computing which is dominated by the three inner products at every point in the image.
The FFT approach outlined above may be used to compute 〈v,1〉 for every image block v by
convolution of the image with an image block with all unit entries. A similar approach allows
computation of ‖v‖ =

√
〈v,v〉 by noting that 〈v,v〉 = 〈v � v,1〉, where v � v represents the

Hadamard product of v with itself. (These techniques are also utilised by Uenohara and Kanade.6)
Consequently the match surface using ρcor(·, ·) may be computed at an O(N2 log2 N ) cost. The
correlation ρtan(·, ·) involves an additional L (the number of tangent vectors) inner products, so the
corresponding match surface has an O(LN2 log2 N ) cost.

4 Results

We test the proposed method using the MNIST1112 dataset of handwritten digits, and consider
invariance to the dilation, rotation, and the diagonal hyperbolic, parallel hyperbolic, and thickening
transforms which have already been demonstrated to be relevant to this type of data10 (although not
in the context of template matching). Since template matching is inherently translation invariant,
the tangents to the translation transform are excluded in these experiments. We note, however, that
the correlation with the translation tangent vectors can be used to provide an estimate of template
location to subpixel accuracy, which may be useful in certain applications.

Fig. 2 A collage of the templates selected for digits 0 to 9.

Computation of the tangents for these transforms via convolution by the derivatives of a 2D
Gaussian is described in Appendix B. In all experiments we use a 12 × 12 Gaussian kernel with
standard deviation σ = 1.75, which was found experimentally to provide a good compromise
between invariance (improving with increased smoothing) and feature preservation (deteriorating
with increased smoothing). A representative template was selected (see Figure 2) for each of the 10
digits. Since we do not expect that the transform invariance accounts for all of the variation between
examples of a specific digit, this would not be adequate for a practical classification technique,
corresponding to using a single training example for each digit, but is appropriate for the evaluation
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reported here.
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(b) Tangent correlation ρtan.

Fig. 3 Rotation transform: correlations between template (digit ’6’) and digit images rotated by α radians.
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(a) Standard correlation ρcor.
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(b) Tangent correlation ρtan.

Fig. 4 Dilation transform: correlations between template (digit ’6’) and digit images dilated by a factor of
α− 1.

In the tangent distance approach, a non-linear transform is approximated by its local tangents,
which are used to modify the Euclidean distance between two vectors.10 In our application, the
tangents are also used to approximate non-linear transforms, but as a modification to a correla-
tion rather than to a Euclidean distance. In the spirit of Figure 5 in,10 we illustrate the benefits of
the tangent-modified correlation (for rotation and dilation transforms; the remainder give similar
results) in Figures 3(a), 3(b), 4(a), and 4(b). For each figure, the tangent correlation is computed
using only the tangent for the transform of interest (i.e. the rotation tangent when rotating the im-
ages, and the dilation tangent when dilating the images). The ρcor results are computed without
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(b) Dilation by a factor of α− 1.

Fig. 5 KLT correlations ρklt between template (digit ’6’) and transformed digit images.

smoothing, and the ρtan results are computed using smoothing of the template and matched image.
Although omitted from these figures in order to avoid excessive clutter, results were also computed
for ρcor with smoothing of template and image, which was found to have significantly better trans-
form invariance than ρcor without smoothing, but remained significantly inferior to ρtan. In all of
these figures, it is clear that ρtan provides much slower decay of correlation as the transform param-
eter is varied away from 0 (i.e. the identity transform), but at the expense of increased correlation
against non-matching templates.

Since the proposed method is closely related to that of Uenohara and Kanade,6 the behaviour
of ρklt under rotation and scaling is of interest, and is displayed in Figures 5(a) and 5(b) respec-
tively. For each transform, the template representation was constructed from a set of 91 transformed
templates, the corresponding 91 transform parameters being selected by equally dividing up the dis-
played parameter range. The cumulative eigenvalue threshold (µ = 0.85) from6 was used, giving
a representation on 10 and 7 eigenvectors for the rotation and dilation transforms respectively. As
one would expect, the behaviour of ρklt is quite different to that of ρtan, with a roughly constant, but
lower correlation across the range of transform parameters, and without the clear peak, at α = 0,
with decaying correlation to either side.

These results indicate that the subspace methods do provide improved invariance to non-linear
transforms, but it is not clear what their relative advantages are in actual template matching appli-
cations, or, in particular, what the associated trade-offs are when comparing increased correlation
with a matching image region with increased correlations with non-matching regions. In order to
make such an evaluation, we compare ROC curves for the different methods used to detect specific
digits within a large collage image (see Figure 6) composed of 3000 digit images. These experi-
ments provide a convenient means for evaluating the increased true match/false match trade-offs of
each method, but are not intended to imply that the simple approach used here represents a practical
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Fig. 6 A small section of the detection test image.
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(a) Digit 0.
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(b) Digit 1.

Fig. 7 Comparison of ROC curves for detection of digits 0 and 1.
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(a) Digit 2.
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(b) Digit 3.

Fig. 8 Comparison of ROC curves for detection of digits 2 and 3.
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(a) Digit 4.
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(b) Digit 5.

Fig. 9 Comparison of ROC curves for detection of digits 4 and 5.

11



ρtan

ρklt

ρcor

False positive rate

Tr
ue

po
si

tiv
e

ra
te

1.00.80.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0

(a) Digit 6.
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(b) Digit 7.

Fig. 10 Comparison of ROC curves for detection of digits 6 and 7.
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(a) Digit 8.
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(b) Digit 9.

Fig. 11 Comparison of ROC curves for detection of digits 8 and 9.
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digit detection algorithm. A digit is considered to have been detected in a given position in the col-
lage if the correlation surface exceeds the detection threshold anywhere within that position in the
collage. ROC curves (see Figures 7 to 11) are computed for the smoothed standard (i.e. ρcor with
smoothing of template and image), smoothed KLT (i.e. ρklt with smoothing of template and image)
and smoothed tangent correlations (i.e. ρtan with smoothing of template and image) by varying the
range of the detection threshold.

Digit ρcor (NS) ρcor (S) ρklt (NS) ρklt (S) ρtan (NS) ρtan (S)
0 0.79 0.87 0.96 0.99 0.92 0.98
1 0.82 0.89 0.99 0.99 0.92 0.96
2 0.82 0.90 0.82 0.86 0.90 0.95
3 0.90 0.91 0.95 0.96 0.93 0.97
4 0.79 0.87 0.89 0.92 0.85 0.91
5 0.75 0.76 0.79 0.79 0.81 0.84
6 0.94 0.95 0.97 0.96 0.94 0.98
7 0.88 0.90 0.92 0.93 0.92 0.95
8 0.82 0.83 0.84 0.90 0.85 0.91
9 0.84 0.85 0.92 0.90 0.87 0.91
Mean 0.83 0.87 0.91 0.92 0.89 0.94

Tab. 1 Area under ROC curves for different correlation measures. Results for smoothed and unsmoothed
templates and images are denoted by (S) and (NS) respectively.

The proposed correlation ρtan is superior to ρcor for all digits, by a significant margin in most
cases. Where the advantage is small, we suspect it is related to the very large variations for these
digits observed in the test data, which can obviously not be accounted for by the small transforms
represented by the tangent correlation (significantly improved performance would probably be ob-
tained by using multiple representative templates per digit). The correlation ρklt is superior to ρtan

for digits “0” and “1”, approximately equivalent for digit “9”, and inferior for the remainder, in
some cases quite significantly so, and is also inferior to ρcor for digits “2” and “8”.

In addition to the ROC curves, an overall numerical performance evaluation is provided by the
areas under the ROC curves in Table 1. Smoothing improves all of the methods, including ρklt,
which, with smoothing, is close in performance to ρtan with smoothing. For these results, the di-
mensionality of the KLT subspaces varied (over the set of 10 template digits) between 24 and 28 for
the unsmoothed approach, and between 11 and 13 for the smoothed results. Reducing the subspace
dimensionality to 6 (the same as for the proposed method) resulted in a large performance degra-
dation, the areas under the ROC curves for ρklt, being 0.88 and 0.82 without and with smoothing
respectively.
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5 Conclusions

We have introduced a new technique for correlation based template matching with invariance to any
chosen “small” transformations, with a computational cost which is a constant multiple of standard
correlation based template matching. The advantages of this technique are shown empirically for
a large test set of images of handwritten digits. This approach is closely related to the subspace
matching approach of Uenohara and Kanade,6 but differs in a number of important respects:

• The most significant difference lies in the construction of the subspace representation. The
proposed technique gives more direct control of the subspace dimensionality, and in general,
requires a lower dimensional subspace, corresponding to lower computational cost. The pro-
posed method is also conceptually (and computationally) simpler, requiring computation of
a single tangent vector for each transform with respect to which invariance is desired, rather
than repeated application of each transform to construct a large set of examples.

• The ρtan correlation allows both positive and negative correlations, a distinction which is
often important.

• The proposed method is more appropriate when invariance only to “small” transforms is
explicitly required, giving a slow correlation decay as the transform parameter is varied
from zero. The ρtan correlation includes a mechanism for preferring the primary template in
the subspace, avoiding spurious matches with image blocks resembling differences between
transforms of the primary template.

The proposed method has better performance than the KLT method, as measured by ROC curves
in a detection application. When combining smoothing with the KLT method, the performance gap
is smaller, but the proposed method has more convenient computation of the subspace, and lower
computational requirements due to lower-dimensionality subspace.

While it is quite possible that the KLT method will provide superior performance in some ap-
plications, we argue that there are theoretical reasons for expecting superior performance (in the
sense of increased correlation with transformed true matches while controlling the corresponding
increase in false matches) when only attempting to use a subspace method to account for “small”
non-linear transforms: as the transform parameters are allowed to become larger, the linear ap-
proximation, and therefore the subspace representation, becomes less accurate, and therefore less
discriminating, with an increasing proportion of the subspace populated by vectors which are not
transforms of the primary template, and therefore represent potential false matches with clutter in
the images being matched.
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A Product of Tangent Correlations ρ0 and ρ1

A relationship between the standard correlation measure ρcor and the tangent-based correlations ρ0

and ρ1 is easily derived:

ρ0(u,v)ρ1(u,v) = sgn(〈v, ũ〉)‖Pv‖
‖Rv‖

|〈v, ũ〉|
‖Pv‖

= sgn(〈v, ũ〉) |〈v, ũ〉|
‖Rv‖

=
〈v, ũ〉
‖Rv‖

=
〈v, Ru/‖Ru‖〉

‖Rv‖

=
〈v, Ru〉

‖Ru‖‖Rv‖

=
〈Rv, Ru〉
‖Ru‖‖Rv‖

(since 〈Rv,1〉 = 0)

= ρcor(u,v)

B Tangent Construction

In this appendix we provide a brief outline of the approach to computing the tangents for the
dilation, rotation, parallel hyperbolic, and diagonal hyperbolic transforms. Greater detail, as well
as the derivation of the tangent for the thickening transform, which is too lengthy for inclusion here,
may be found in.10

Since we have only a sampled representation for our images, we compute the necessary deriva-
tives by convolving our sampled representation with a Gaussian smoothing kernel, and making use
of the result

f(x, y) = g(x, y) ? h(x, y) ⇒ ∂f

∂x
=

∂g

∂x
? h and

∂f

∂y
=

∂g

∂y
? h,

allowing the transfer of the derivative to the smoothing kernel g.

B.1 The Smoothing Kernel

We use the smoothing kernel

g(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
,
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with derivatives

∂g

∂x
= − x

σ2
g(x, y)

∂g

∂y
= − y

σ2
g(x, y).

B.2 Dilation

Define the operation of dilation by a factor of 1/(α +1) as Tαf(x, y) = f((α +1)x, (α +1)y). We
therefore have, after defining u(x, α) = (α + 1)x and v(y, α) = (α + 1)y

d

dα
Tαf(x, y) =

du

dα

∂f

∂u
+

dv

dα

∂f

∂v

= x
∂f

∂u
+ y

∂f

∂v

= x

(
∂g

∂u
? h

)
+ y

(
∂g

∂v
? h

)
,

so that
d

dα
Tαf(x, y)

∣∣∣∣
α=0

= x

(
∂g

∂x
? h

)
+ y

(
∂g

∂y
? h

)
.

B.3 Rotation

Define the operation of anti-clockwise rotation by an angle of α radians as Tαf(x, y) = f(x cos(α)−
y sin(α), x sin(α) + y cos(α)). We therefore have, after defining u(x, y, α) = x cos(α) − y sin(α)

and v(x, y, α) = x sin(α) + y cos(α)

d

dα
Tαf(x, y) =

du

dα

∂f

∂u
+

dv

dα

∂f

∂v

= [−x sin(α)− y cos(α)]
∂f

∂u
+ [x cos(α)− y sin(α)]

∂f

∂v

= −v
∂f

∂u
+ u

∂f

∂v

= −v

(
∂g

∂u
? h

)
+ u

(
∂g

∂v
? h

)
,

so that
d

dα
Tαf(x, y)

∣∣∣∣
α=0

= −y

(
∂g

∂x
? h

)
+ x

(
∂g

∂y
? h

)
.
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B.4 Parallel Hyperbolic Transform

The parallel hyperbolic transform (see [10, Section IV.C]) with parameter α is Tαf(x, y) = f((1 +

α)x, (1− α)y). We therefore have, after defining u(x, α) = (1 + α)x and v(y, α) = (1− α)y

d

dα
Tαf(x, y) =

du

dα

∂f

∂u
+

dv

dα

∂f

∂v

= x
∂f

∂u
− y

∂f

∂v

= x

(
∂g

∂u
? h

)
− y

(
∂g

∂v
? h

)
,

so that
d

dα
Tαf(x, y)

∣∣∣∣
α=0

= x

(
∂g

∂x
? h

)
− y

(
∂g

∂y
? h

)
.

B.5 Diagonal Hyperbolic Transform

The diagonal hyperbolic transform (see [10, Section IV.C]) with parameter α is Tαf(x, y) = f(x+

αy, αx + y). We therefore have, after defining u(x, y, α) = x + αy and v(x, y, α) = αx + y

d

dα
Tαf(x, y) =

du

dα

∂f

∂u
+

dv

dα

∂f

∂v

= y
∂f

∂u
+ x

∂f

∂v

= y

(
∂g

∂u
? h

)
+ x

(
∂g

∂v
? h

)
,

so that
d

dα
Tαf(x, y)

∣∣∣∣
α=0

= y

(
∂g

∂x
? h

)
+ x

(
∂g

∂y
? h

)
.
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