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ARead This Preface !

Analysis is often first encountered in an undergraduate course that
seems like calculus plus rigor. While a few find it interesting, many
are turned off from analysis because of the mundane and needlessly
dry nature of such a class. This text is intended to change that con-
ception by introducing students to ideas in analysis that are not often
encountered until a student is in the second or third year of graduate
school.

The Backstory for This Text

I decided to write this text after teaching parts of the contents of this
text to three undergraduates during the summer of 2011. We met 2-3
hours a day, 2 days a week. The next year I expanded it a bit and
taught it to about 10 students – I believe it was 8 graduate students
and 2 undergraduate students. I did not assume a course in analysis
as a prerequisite, though students with and without that background
took the course.

The text will not dwell on applications though it will make many
references to applications and to texts that deal with applications. And
though this text is not about applications, the inspiration for this text
comes from applications. In particular, geometric measure theory or
more broadly, geometric analysis (which I define more organically to
be the intersection of analysis and geometry) are loaded with under-
exploited insights and tools, begging to be applied to all sorts of
interesting data analysis and data modeling problems. Less often seen
and discussed, is the fact that these areas of applications are full of
inspiration for new mathematics on the purer side of mathematics.

11
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I am very geometrically and intuitively oriented, having become more
analytically skilled only through my interest in geometric measure
theory and geometric analysis. That bias comes through in the book.
In fact, I believe it is what permits me to introduce more advanced
ideas long before they would be introduced in the usual progression
of courses that a student might take. In particular, I will make efforts
to give intuitive arguments for all the ideas introduced, many of which
can be developed into full proofs with a bit of work. I will also give
detailed references to works in which proofs of results can be found.

One note of caution: I am sure that my way of dealing with some
definitions will be irritating to some very precise souls, who will view
what I do as too fast and loose for anybody’s good. My advice to them
is to read other books. There are many other books, though I firmly
believe that there is room for a whole host of approaches and the one
in this book being too scarce a model in published texts.

Part of the inspiration for the course is Bill Thurston’s 1994 Bulletin
article [41], where he shows a few entries from a list of the different
ways in which the derivative can be understood. He made the state-
ment that “The list continues; there is no reason for it ever to stop”.
That stuck with me. The course notes that inspired this book were
based on the idea that derivatives can lead you (almost) anywhere in
analysis. And to prove it, I did just that, throwing in integration and
high dimensional geometry as needed.

Another premise of that course was that geometric intuition is a very
powerful tool that can be exploited to bring students with a modest
background into productive contact with mathematics that is much
more sophisticated than they would encounter at their level.

The final premise that formed the basis for these notes is that the first
exposure to analysis need not be the dry, calculus + {ε’s and δ’s} that
is usually taught. Analysis is a fascinating area, with big surprises
and beautiful opportunities for exploration. The typical introductory
course in no way makes that clear, though the three other books I

12
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have used for this course (books by Kennan Smith, Wendell Fleming,
and Tom Lindstrøm [38, 14, 25]) were very pleasant and inspiring
exceptions to this pessimistic assessment.

Minimalism

I am now convinced that the path to mastery is characterized by
a barehanded immersion, enabled by recognition of a minimalist
path, in which the essence is recognized and used to strip away the
heavy impediments that accumulate when the minimalistic core is not
recognized and exploited.

I think I first became consciously aware of this kind of approach to
problems when I sat in mathematics classes taught by Andy Fraser, my
PhD advisor. His physicist knack for cutting through the complexity by
seeing the simple core of things was profound and inspiring. Moving
to the lab, seeing other physicists do the same thing (John Pearson and
Chris Morris spring to mind) further influenced my focus on essence.

When I discovered my muse was in geometric measure theory, inspired
by David Caraballo – he was the pied piper, I was happy to be led
into the field – I found that if I looked for the geometric core, I could
penetrate things that otherwise looked very difficult. Sometimes doing
that was even easy.

Then I began teaching geometric measure theory and analysis, both
at the graduate level and the undergraduate level. I realized that the
usual teaching style – more or less writing the textbook on the board –
was not only numbing and boring, it was not something I could bring
myself to do. I saw it as my duty to highlight nuance, to delve into
delicate corners the students missed, to point out the simplicity at the
core and otherwise enlighten them to viewpoints that enabled them to
see further than if they simply studied the book.

13
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All this convinced me the way to gain mastery is to find and follow
the minimalistic, barehanded, immersive path to an instinctive facility
– one that insists on mastery of the simple essences that truly unleash
the power of the subject.

The writing of this book

I decided to create many of the figures by hand, so that the figures
would resemble what might appear on the blackboard or whiteboard
if we were having a conversation together, deeply engaged in chasing
the nuances, in finding the essence and using that to see more deeply.

When this is released, I will have finished the first edit of the book, but
I will continue to revisit the book from time to time. I have a different
perspective on writing and editing, including the fact that I am very,
very careful about not letting the process of editing remove too much.

In fact, I think that the real art is in letting there be just enough of
what some would call raw or rough traces in the writing to lend real
authenticity to the writing. I think perhaps a better term would be
"idiosyncrasies", instead of the phrase "raw or rough traces".

I know that a trained editor might itch to make those pieces conform
to their view of writing, but this is not something I believe is the right
thing to do if readers are to see into the writer’s experience, into what
they might experience in a conversation with the writer.

Prerequisites

As far as prerequisites go, I assume very good courses (and good
performance) in the entire calculus sequence, including vector calculus,
and both linear algebra and differential equations. A course in proofs,

14
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especially one that works on simple analysis proofs and ideas in metric
spaces would be helpful.

Ideally, a course that taught the basics of metric spaces would also be
a prerequisite, but I have included an early chapter with the results
we will need from metric spaces because few seem to have experience
with metric spaces before they take their first analysis class.

I would suggest that this book is best when combined with either a
mentor or at least someone who can give you pointers now and then,
because this is what I do with my students. A little suggestion this
way or that can be helpful from time to time. If you do not have such
a person, perhaps you can find another student to collaborate with.
But if you are reading this and dedicated to learning the subject, you
will find that those who are already skilled in the subject are more
often than not willing to be generous with their time. Because truly
motivated, passionate students are not very common and are a joy to
work with!

A Note on Problems and Exercises

One of my favorite geometric analysis books, Evans and Gariepy [12],
has no explicit exercises, but I found that studying the book closely
required me to fill in between the lines, so to speak, and frequently left
me asking why conditions were necessary, how I could vary definitions
or theorems and how I could extend ideas in various ways. The result
was that these exercises and problems that emerged from my own
deep reading, seemed highly natural and organic. I found that they
fit with the flow that I would get into when studying the text and did
not feel like a distraction or an unwelcome, alien invasion of the flow I
was immersed in. The same cannot often be said about the traditional
approach to problems in many mathematical texts.

15
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Ideally, you will focus on emergent exercises and problems when
you read this text, only some of which you will find in those I have
put into the text. While I believe that many of the exercises in the
book fit this spirit of exercise and problem generation, such a mode
is inescapably personal, so when you read this book that deeply, you
may very well end up with different questions you want to answer.
You should therefore not be afraid to diverge (at least sometimes!)
from the exercises and problems I have selected. It also takes practice
to learn how long to work on a problem before giving it a rest or how
to pick the problems you want to work on. Not every problem needs
to be solved for you to master the text!

This art of learning how much to work on a problem and when to
diverge from stated problems that, for you, break the flow you are
emerged in, will take time and is made much more enjoyable when
there are others you can talk with, if for no other reason but for you to
explain to someone else what you have learned. I therefore encourage
you to find at least one or two others who are as inspired as you are
to learn the subject.

Finally, there are deep benefits that you can reap from merely thinking
about a problem carefully, even if you do not solve the problem. You
might find that you are inspired to vary the problem, to go off on an
inspiring tangent suggested by that problem. I would encourage this!
If there is anything that kills the spirit of deep flow, it is the idea that
there is a “right way” to get to some goal, that the author or expert
should be treated as an oracle or guru, that they know better than the
muse of your own spirit in the midst of flow that you find. Down with
such ideas! While those who have gone before have useful insights
and even wisdom, they are all partial and in the end, often faulty in
some (perhaps big, perhaps small) way. This is a journey that you
must take a craft, You have to open to the muse, to the flow. Those
“experts” and “authorities” know little of your precise path and may
have little to say that can help. Learning to filter what others say, to
hear when what is said or claimed fits with the flow you have found,
and having the courage to move in different direction (not simply to
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be different, but because your inspired path is in that direction) is a
part of becoming a true master.

Notes on Chapters

As made obvious by it’s title, I expect everyone to read the Preface and
I believe the Preamble, though highly unusual, is perhaps the most
important three Chapters of the book.

The next section, Analysis I, is an invitation to analysis intended as
something between an informal flyover of fascinating territory and
teaser to be sampled here and there, hopefully dispelling the notion
that Analysis is merely calculus, with ε’s and δ’s.

When I teach from this book, I am usually teaching to students whose
preparation in metric spaces and inequalities is very, very weak. They
also misunderstand proofs and the central role of creative exploration,
of taking the time to think and feel and see. As a result, in the first
semester, we focus on the Analysis I Section and spend quite a bit of
time on Chapter 7, Just Enough Metric Spaces and Chapter 8, The Art of
Inequalities.

The second semester focuses on the Analysis II Section and mastery of
Chapters 11 and 12, Derivatives and Measures and Integrals, respectively.
This might seem, at first sight, to be a rather limited course, but
the path taken in these chapters lead to interesting and surprising
directions for students expecting analysis to be just very fussy calculus
(i.e. calculus with ε’s and δ’s).

In the Section titled Analysis I, Chapter 9, on everything linear, is
assumed known, though in practice most have to review this chapter.
Likewise, before tackling chapters 11 and 12, it is expected the students
will work through Chapter 10.

17
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The final section of the book, Analysis III, is an invitation to deeper
analysis in general and geometric measure theory in particular.

Have Fun!

I do intend that all 16 Chapters be read, but I suspect that most
students will not do this first time through. Nevertheless, those that
are aiming at mastery will read more than is required, and in a mode
that yields immersion and flow. Taking the time to think and feel
an see (see David Levy’s Google Tech Talk [23]), they will learn that
mastery is both hard work and, at the same time fun! For, as is clear
from Chapter 1 in the Preamble, playfulness is central to mastery, and,
as a result, so is having fun!

In order to spread the fun as widely as possible, the e-copy will
always be free and you should also feel free to print a printed copy for
personal use.

If you find typos or mistakes, I would be grateful to hear about them
from you and will of course acknowledge the fact you did so in the
corrected version. While the e-copy will be updated when typos/errata
are pointed out, the printed version I have for sale will be updated
quite a bit more slowly.

I hope that the readers of the book will find the contents inspiring
in the best way – that they will find themselves, time and time again
going off on tangents of their own devising, exploring, creating, asking,
answering.
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1
Intuition , Playfulness and

Proving Things :
A Practical Guide

In the next three short chapters, I will grapple briefly with the meta-
issues that are rarely talked about in courses on analysis, but are,
nevertheless, crucially important for real mastery of the art of analysis.
While it is true that some (or much) of this is best learned individually
because it has to be learned in a unique way by everyone while actually
doing analysis, bringing these subjects into the awareness aids in that
(at least semi-solitary) process.

The hardest thing for many students is the transition from crank and
grind, black-box problem solving to the flow mode in which they
vividly imagine new things, grasp subtle arguments solidly enough so
they can modify, extend or completely transform them, and immerse
themselves so deeply that the problem comes alive. This does not
happen very quickly for most.

Adding to this challenge is the fact that so many students are taught
proofs in ways that are, at best, unhelpful and at worst, simply incor-
rect and misleading.

Formal, written proofs are, very simply, clear arguments that convince
careful thinkers of some statement’s truth. They are a small part
of doing mathematics. Many times students come away from proof
classes thinking sentence structure, proof structure, and very particular
language are crucial or even central to mathematics. But this is false.
Even grammar can be unimportant, because there are things that give
grammarians a fit, yet in no way decreases the clarity of a written
statement. There are styles of writing proofs that use very short
sentences quite effectively. While these sentences are usually complete,
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intuition , playfulness and proving things

they are very far from flowing prose that students just fresh from proof
classes seem to write in.

But instead of focusing on what is wrong with the typical proof class
experience, I will focus on two things I believe should be taught, before,
during and after the topics in analysis are studied.

1.1 Playfulness as a Strategy

A huge piece of making the transition from routine, crank and grind
mathematics to creative and original thinking, is the devotion to a
playful attitude and mode.

While I do not always succeed in staying in that mode, this is always
my goal when I have the quietness and emotional resources this takes.

The goal is child-like wonder, flexibility, and optimism. (It is very
important to distinguish between “child-like” and “childish” – there
is no advantage and many disadvantages of childish modes.) The
child-like states are states of unbounded creativity and originality –
states in which the possibilities are endless. A crucial component
here is the emotional health that comes from having dealt with past
traumas – for trauma, and the fear and closed, disconnected mode of
living that results often blocks this state of flow.

1.1.1 Why Trauma Enters This Discussion

Though I know talking about trauma and emotions is unusual in a
book on technical mathematics, I am convinced it is necessary because
mathematics is an art, and art depends on our emotional resources.
One has to know how to carve out places in space and time where
safety and flow are possible. Eventually, to reach the highest levels of
creativity and consistent, sustainable flow leading to freshly original
productivity, past emotions have to be healed.

30



1.1 playfulness as a strategy

Fortunately, there is a lot of awareness and methods to heal trauma. A
good starting point for those that want to know more are the talks by
Tara Brach and Gabor Mate [8, 28]. It is now well understood that this
is a whole person mission – you body actually does keeps the score.
See the book with that title of a by Bessel van der Kolk [42].

And while it is true that trauma also gives you gifts, those gifts cannot
be fully reaped until the trauma is healed. So it makes no sense to
ignore these issues.

In my own case, those gifts included mastering all the skills of an
introvert and finding solace in deep study and the solitude of wan-
dering the desert with my dog. Opening to healing did not remove
those skills or the impulse to reap the benefits I might never have
experienced – in fact, it has only increased my ability to plumb the
depths of those gifts. As I found healing and places of safety on my
path to healing, I was able to begin again finding those child-like
qualities that open up the creative flood-gates.

1.1.2 Playfulness

Instead of prescribing a concrete list of answers for those seeking
this flow state (I don’t think this is possible!), I will instead give the
principles that help me find the flow state and some simple exercises I
have found useful. You may find a very different path into that state
and that will be just fine.

Quietness I find it hard to explain the power of quietness, at least
in any deep way. And it is more than a little paradoxical to write
and talk about quietness. But it is out of the stillness we find in the
pursuit of depth and living inspiration, that our creativity, our fresh
originality emerges. My early efforts to explain this to others dates
back to my attempts to get my 7th and 8th graders to sit in quietness
in nature, listening to what might speak to them. (I taught 7th and
8th grade science and history for one year when I was in graduate
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school). Eventually, I decided that simply telling the story of my own
walkabouts, in person, one on one, was the most effective thing I
could do in evangelizing for quietness. I also started recommending
David Levy’s Google Tech Talk from 2008 [23]. Quietness as a practice
is closely related to the skill of deep reading, where one enters an
immersive flow state focused on understanding and exploring the
ideas in a text. There is a strong correlation between those that have
developed this skill and those that master analysis/geometric analysis.

War m up play Starting a day of mathematics by playing around
with elementary questions is something I have found very helpful. It
is related to the habit of finding the simplest examples of an idea and
getting to know every aspect of those examples, from every angle, as
a way to move into a state where the ideas are alive and flowing. I
have, for example, frequently recommended Burn’s book offering a
problems based approach to elementary analysis, [10]

Take things apart When you are presented with an example or a
theorem or a definition, look at all the pieces and how they relate to
each other.

Build things from scratch After understanding the definitions in-
volved, attempt to get (similar) theorems from scratch, making your
own additional definitions as necessary.

Change things Perturb assumptions and see what you can prove.
Find out if assumptions are necessary or just convenient. Try to come
up with families of definitions/theorems by perturbing the definitions
and assumptions.

Rewrite things Rewrite pieces of text that are not crystal clear, in
order to put the ideas in your own frame of reference more solidly.

Teach things to others with pictures After you figure something
out (new or old), explain it to others.
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1.2 Building 1st and 2nd Order Intuitions

As your experience grows, your intuitions grow and in analysis, one of
the first intuitions that you learn that turns out to be very, very useful
is that of 1st order approximations, i.e. derivatives. That is, smooth
things are locally linear. With this sense for local behavior, you can go
a long ways. Much of Chapter 11 an immediate consequence of this
appealing “first order” intuition.

What do I mean by “first order”? Because I assume you have had
calculus, I can use the idea of a Taylor Series to explain the answer. If
f is a function that has continuous first, second and third derivatives,
we know that the following expansion is true:

f(x) = f(x0) + f
′(x0)(x− x0) +

1

2
f ′′(x0)(x− x0)

2 + E (x− x0)

where |E((x− x0))| 6 C|x− x0|3 for some constant C.

Because we are evaluating the derivatives at x0, and the only variable
in sight that is not fixed is x, we can rewrite this as:

f(x) = a0(x− x0)
0 + a1(x− x0)

1 + a2(x− x0)
2 + E ((x− x0))

where the constants {a0,a1,a2} = {f(x0), f ′(x0), 12f
′′(x0)} respectively.

Now we notice that for small enough |x− x0| the terms in the equation
decrease as we move from the left to the right on the right hand side.
That is, there is a δ > 0 such that |x− x0| < δ implies

a0(x− x0)
0 >> a1(x− x0)

1 >> a2(x− x0)
2 >> E ((x− x0))

and that this means the first term, which is a constant and denoted the
zeroth order term (the power that the variable x−x0 is raised to), is the
most important value and is at least a roughly correct approximation
to f close to x0. The next term – the first order term a1(x− x0)

1 is the
linear correction to the first order term that, when added to a0(x− x0)0
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gives a correction and results in an even more accurate approximation
to f near x0. Finally, if we add the quadratic term – the second order
term – we get an approximation to f whose error (E(x− x0) that is
cubic in x− x0 and therefore goes to zero even more quickly as we
approach x0.

In higher dimensions, the notation is more complicated, but the idea
is the same. (Except in higher dimensions, the topology of the graphs
of the second order terms is a bit more complicated and this leads to
pleasant things like Morse Theory.)

It turns out that knowing the zeroth and first order terms is enough
to say a great deal about some situation, analytically, geometrically
and if you also know the second order correction, you are often able
to answer any question you are interested in.

While gaining an instinctive mastery of the use of first order ap-
proximations takes some work, pretty much everyone who works
in analysis, and in fact anyone who uses it in science (so lots of
non-mathematicians too), learns to wield first order approximations
intuitively.

They have decent or good first order intuitions.

Developing intuitions that instinctively wield second order corrections
is more work, and many fewer do what it takes to really make these
insight-generating calculations truly instinctive.

Exercise 1.2.1. play around with polynomials of degree 3 –i.e. f(x) =
a0 + a1x + a2x

2 + a3x
3 – using some tool like Matlab, octave, R or

python in order to plot and see the effects of approximating f (all 4

terms) with only the first k terms, k = 1, 2, 3 (i.e. the zeroth, first and
second order terms). Notice that the biggest effects happen when
a1 = 0 or a2 = 0 while some higher order term is not zero. You might
begin by, noticing that setting a0 = 0 has no effect on the shape of the
graph of f and start by looking at f(x) = x(x2 − 1)
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Now, if we are thinking of an object like a smooth 2-dimensional
surface S ⊂ R3, we can always express it locally at p, perhaps after a
rotation and translation in R3, as the graph of a function which has
a horizontal tangent plane at p. We note that in these coordinates,
the pesky need for the second order information is there because the
tangent plane (the derivative approximation) is horizontal and we have
no idea from looking at the derivative if the shape of the surface is like
an upward pointing paraboloid, a downward pointing paraboloid or
a saddle with p as the saddle point. Assuming the second derivative
is nonsingular, we can immediately know the shape. (Of course, it
is possible that all the derivatives up to some order k are zero or are
singular in which case you have to have even higher order terms to
get a grip on the shape of the object of interest. But this is a more
advanced.)

The gist of this little story is that we always need first and second
order information to understand shape – and sometimes even more.
Thus, developing first and second order intuitions is a very good thing
if you want to master geometric analysis.

I will close this section with a very short story.

At one point I was asking a mentor of mine, Bill Allard, what set apart
his colleague Fred Almgren (both Fred and Bill were very famous for
their work in geometric measure theory). Bill thought for a moment
and responded, “Fred had a second order intuition”.
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Figure 1: Examples of the rotations of a surface that (1) locally looks
like a paraboloid at the point p and (2) a saddle at the point q.
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1.3 proofs

1.3 Proofs

Written proofs play a crucially important role in mathematics. First,
this activity helps you find subtleties you missed, errors you over-
looked and second, the proof can easily be transmitted to others.

There are least three things crucially important to a well developed
ability to create mathematical proofs – (1) the cultivation of child-like
perspectives and habits, (2) the restoration of emotional health and (3)
the development a deeply instinctive and enlightened intuition.

Why? Because proofs are first and foremost a (hopefully) clear vision
of why something is true, first intuitively and then the refined (and
often slightly, sometimes greatly, corrected) version that emerges by
iteration ... and eventually gets written down. And in turn, this
process depends on the creative freedom and deep insight that (1)-(3)
open up and support.

Though I have less evidence for this, I believe that (1)-(3) also help you
in translating what you see and imagine into writing that is clearer,
even though, as noted in the first section, it seems this process very
often falls short of capturing the true vision that was imagined.
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2
Music as Poetry,

Mathematics as Music

I will begin this very short chapter with a piece I wrote on my blog
and then included in my book, Verses and Footnotes. The title of the
piece was, Speaking the Language that Cannot be Spoken.

2.1 Speaking the Language that cannot be Spoken

T
hough I have gone further in my mathematical career, my past

is also filled with music. Violin performance in multiple orchestras
and chamber groups, together with several concerto competitions

and the intense practice this required, had a large impact in my life.
There is also the fact that my father was a musician, that our family
was immersed in a musical environment.

I recently listened to a concerto while watching the notes scroll by. The
complexity of the notes on the page were, somehow, not matched by
the experience of music in that innermost place – that place from which
you play when you perform. I found this experience very similar to
the experience of creating new mathematics and then writing it down
to communicate what I see.

Why?

Because I believe musical notes on paper and detailed proofs in a book
or published paper are both misleading.

The music and the mathematics are, somehow, much simpler in
their pure, newly created form. The complication evident in the
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written form comes from the unnatural way we have to communicate
music and mathematics.

When I slowly recall or relive the creation of a proof, whose written
form is non-trivial and may even seem imposing, I find the natural
state of the proof in the imagination to be simpler, even minimalistic.
Yet when written, expanding to something that looks imposing, it is
often hard to read or imagine.

In the natural language of the soul, both mathematical proofs and
musical compositions sing and flow. But in the language of things
written down, we usually lose this living simplicity and beauty.

When we do harmonize the imagining and the telling, it is through
the action of a whole person, in real time, speaking, writing, drawing,
adapting, listening, responding ... finding the music that, for us,
connects the inner and outer universe.

For it is the human being that integrates the universe, speaking the
language that cannot be spoken.
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2.2 Poetry, Music and Mathematics

Listening to pieces like Max Richter’s On the Nature of Daylight or Medt-
ner’s The March of Paladin or the second movement of Shostakovich’s
Piano Concerto II, I am drawn into the poetry, the stillness that sings,
the flow filled with light.

Surrendering to this instrumental music, I find myself in an altered
state, a state that is somehow poetic, though without words. In that
transformed state of flow, I am very close to the state of flow that
comes when I immerse myself in a problem or deeper exposition of
some part of mathematics. Perhaps this is not a common experience,
but I suspect that it is at least accessible to anyone willing to invest
the stillness, the quietness, the time.

Like the preceding chapter on playfulness and the intuition, this
chapter is definitely not the usual fare for a book on analysis.

So why do I include it here?

This book is a door to the art of geometrically inclined analysis. Be-
cause the door leads to unfamiliar, very often challenging places, I
believe the entire wholistic ecosystem that mathematics is a part of
ought to be exploited in the pursuit of mastery of the art. I believe
this ecosystem includes music and poetry. This poetry might include
formal poetry, but for me at least, this refers to those organic, poetic
expressions, ungoverned by strict rules of the more formal examples
of written poetry.

As noted in the first section of this chapter, I was raised in a very
musical household, exposed at an early age to a wide range of classical
music, both recorded and live, at Orchestra Hall in Chicago. I began
on the Piano, switching to the violin, eventually practicing and playing
with an intensity that prepared me for deeper mathematics. For the
quietness required to really hear music, to feel the poetry is the same
quietness we need to really see and hear and feel the music and poetry
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in the mathematics. So, in some deeper sense, these three provide a
sort of cross-training for each other.

Is there practical advice to be found in this chapter?

Yes. Seek music and (organically defined) poetry you can connect
with. To do this, you must master the art of quietness, of hearing the
stillness speak and sing. Unplug, begin walkabouts in nature, read
books that move slowly, yet deeply and find that flow opening doors
to the infinite everywhere around you.

You will find this strengthens the same faculties necessary to do deeper
mathematics.

The closing piece of advice is, do not take the above advice some-
thing you must do, like a chore or calculations that are necessary but
somehow rather dull or scales that you have to play when you are
practicing an instrument. What I am encouraging you to do is fall in
love with music that inspires stillness, with poetry that illuminates
and heals. Then write your poetic reactions, fiddle around with a
musical instrument – experiment, explore, improvise.

Find your place in the flow.
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3
The Art of Mastery :

The Three David ’s and One Daniel

This final chapter of the preamble is intended to help you understand
a bit more about how environments for innovation and creativity are
created and maintained. It is also intended to encourage you to reflect,
to broaden your exposure to ideas quite far afield of mathematics. To
do this I will recommend three books and one video I believe should
be much better known by those in STEM.

The path to real mastery is a path of immersion; this is rarely taught
anymore, inside or outside the mathematics classroom. The pernicious
influence of social media is rewiring brains to think broadly but only
at a very shallow, surface level. Students (and anyone else seduced by
these devices of dopamine stimulation) are losing the ability to read
deeply, to think deeply, to move patiently towards treasures far below
the surface.

The good news is that the plasticity facilitating these negative effects
also allows these effects to be completely reversed. It simply requires a
decision to strictly limit your interaction with the culture and devices
that are designed to exploit you, and a commitment to deeper things.

I am convinced that if more students paid close attention to what I am
saying here, many more would master the course I teach in analysis
based on this book.

I would encourage you to view this particular chapter as an invitation
to new habits that will help you find mastery in analysis (and anything
else you want to master).
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3.1 Three Books and One Video

The Genius in All of Us , by David Shenk Shenk explores the
implications of epi-genetics and the fact that we each have tremendous
potential – Genius is largely learned, not some accident of “genetics”.
This is both good news – potential genius is as common as dirt – and a
call to action – it is a call to finding your groove and then finding flow
in that groove, putting in the time to develop your muse, your genius.

Range , by David Epstein David explores the power of organic
diversity. I say “organic diversity” to differentiate it from simply
diversity which has become a code-word for an extremely narrow
vision of diversity. i.e. racial diversity, gender diversity, etc. He makes
a convincing case for the fact that doing lots of different things before
you find the place you contribute deeply is not a distraction, but
a feature of those personal paths that makes for much deeper and
stronger contributions. I strongly recommend reading this.

No Time to Think , by David Levy This is a Google Tech Talk
from 2008 that you can find on YouTube. In the talk David makes a
compelling case for disconnecting, slowing down, understanding the
power of quietness and contemplation. I recommend this to all my
students and anyone else who will listen.

The Culture Code , by Daniel Coyle I have built two industrial
labs (think small Bell Labs, or Google Labs) based on the ideas I and
my co-founders had learned first at places like Los Alamos National
Laboratory and MIT and other places, but were first explained well in
something we could hand to others in Daniel Coyle’s delightful book.
It would be worth more than the purchase price if you bought it solely
for the enlightening anecdotes. It has my very highest recommenda-
tion. (Another data point here is that I thought so highly of the book
that I bought literally dozens of the book and gave them out!)

In the next section, I look much more deeply at the book by Coyle.
(This first appeared on my blog and then in my book Verses and
Footnotes.)
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3.2 Cultures of Creativity and Innovation

B
ooks reliably inspiring enthusiastic conversations are books
worthy of close attention. When Beata read and recommended
Daniel Coyle’s book, The Culture Code, encouraging me by read-

ing bits and pieces of it to me, it was not long before I knew that I had
been introduced to just such a book. Soon I was buying copies and
giving them away. Over the course of 2-3 months I gave away a bunch
of copies and organized an evening in the top floor of the Monarch
Motel in Moscow, Idaho devoted to discussion of the book.

The present article is part of my evolving reaction to the stories and
theories in Coyle’s book, prompted by an immersive, barehanded
engagement with the ideas.

The stories of remarkable environments for creativity and produc-
tivity, as well as the stories of studies and research aimed at under-
standing cultures of creativity and productivity, are brilliantly chosen.
For this reason alone, I can, and do, recommend the book to everyone.

If those stories are listened to, and felt and thought about, and experi-
mented with, the effect on the reader is large.

When I get a (non-mathematical) book and read it carefully, it means I
have chosen to engage rather deeply. Usually I write in the margins,
in a sort of hand to hand combat with the details and nuances.

There is a fair bit now written in the margins of this book.

While I sometimes have issues with the theories used to explain things
- mostly nit-picky like the fact that nonlinearity does not equal non-
logical, see the story of the Allen Curve - the quality of the inspiration
affected by the book completely outweighs any concern about the
book’s shortcomings.
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The core of this book is the threefold cord of (1) safety, (2) vulnera-
bility and (3) purpose which, expanded a bit, becomes:

1 Safety and belonging - taxing existential questions are never the lot of
individuals in highly creative, productive environments. The growing
scarcity of safety and belonging in many workplaces should be a
source of deep concern. The gig economy is an indication that we
are eating our seed corn and have ceased to pay even lip service to
wisdom and a sustainable future.

2 An empathetically evolved environment enabled by vulnerability
powered connection. A status flat environment in which creative
energy flows easily is an environment in which truth and kindness (to-
gether!) are common, even foundational. Empathy, in its nuanced and
expanded incarnations, is at the root of all highly effective, sustainable
environments.

3 Purpose and vision - a bold, omnipresent clarity on the deeper foun-
dational laws of being as well as the aims, the goals and the lofty
visions that drive everything. An environment filled with signals
keeping these principles and visions in constant view, is an environ-
ment whose vision is sustainable. Opposing the natural trend towards
higher organizational entropy, these signals are an energy that en-
ables the culture to remain inspired and organized for innovation and
collaboration.

These three threads are the pillars of environments that have no trouble
retaining those entering their influence. We visit and never want to
leave - quite literally. In fact, Daniel himself admitted that when he
was doing the research for the book, he found himself making excuses
why he needed to stay in the environments he was investigating, even
after he had the information he needed for his book.

Of course, some of the research was historical, visible only through
the stories of those who were lucky enough to be part of those past
places. Take for instance, Bell Labs in its heyday and Harry Nyquist.
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In trying to understand the smaller group of super-innovators at Bell
Labs, every possible factor was eliminated until it was discovered
that all of these super-innovators ate lunch with Harry. He would
draw out and listen to his lunch-mates with interest and curiosity,
quietly giving them inspiring ideas and questions to go away and
think about. Though Harry was also well known and influential
because of his own research and innovation, neither this fact, nor
his ability to spark innovation in others, seemed to effect his gentle,
fatherly demeanor or tranquil reliability. In fact, these characteristics
seemed to be significant part of the reason for his power. Disarmed by
his demeanor, they opened up to his relentless curiosity.

At IDEO, the design company responsible for a large number of
design innovations, Roshi Givechi plays a similar role, roaming from
one design group to another, helping them to overcome obstacles and
find new creative grooves through a powerful ability to listen and ask
questions. In fact, when Daniel Coyle told her the title of the book
he was doing the research for, it was not long before he had a new
subtitle after she asked a question about his choice of subtitle.

The other stories and anecdotes are very well selected and wide
ranging. Some illustrate principles of collaboration. The Allen curve,
showing that effectiveness of collaboration is inversely proportional to
the distance between desks of those collaborating, is another striking
story of discovery that is both surprising when you hear it for the first
time and sensible, even intuitively reasonable, when you take it in and
think about it for awhile. While it is not an illogical relationship, as
Coyle asserts, it is a non-linear one that will nonetheless make sense
to anyone whose intuitions include some instincts for physics and
chemistry and interactions and reactions.

Other stories are rich with insight, a sort of living book waiting to be
read more and more deeply. One of my favorites is the story Coyle
starts the book with. In that story, kindergartners outdo, by a factor
of two, groups of business students and professionals in a challenge
to build the highest tower with a piece of tape, a string, a few dried
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spaghetti and a single marshmallow. The reasons for this difference,
of course, motivates much of what follows and sets the tone for the
rest of the book.

As noted above, I ended up with a book full of marginal notes (in
pencil!) and a lot of thoughts that were discussed with others. If I
had to select a phrase that captured the influence of the book on me, I
think it would be:

... brilliantly selected stories and simple principles that were even more
compelling because they were validated by my own experiences in
trying to build highly effective teams of innovators ...

And the effect of the book does not end with the sharing of the book
and discussions.

The histories of places like Bell Labs, Xerox PARC, Los Alamos and
the Rad Labs in Boston were already part of my own context, either
through direct experience or through careful histories I had read and
internalized, but something about the combination of this book and
my own struggles with getting groups together that were sometimes
partly or mostly successful, and other times were pretty clear failures,
created in me a deeper openness and readiness to put these principles
into action.

Beata’s discovery actually coincided with an invitation from a FinTech
company to join them and up their algorithmic game. I did this by
starting a research lab – think of a small, updated Bell Labs focused
on financial algorithms and education, plus more. I was able to use
Coyle’s book as a tool for evangelization of the ideas I planned to
implement in creating the culture of the Lab. The leadership of the
company read and understood the ideas rather deeply. This led to the
essentially blank check from, and personal involvement of, the CEO
and founder of the company. While the full details of this story will
not be told here (and, when the CEO moved on to his next startups, I
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also left the company), I can say that the discovery that Beata made
and passed on to me, was remarkable.

I give the book my highest recommendation.

3.3 Down with Silos!

Sustainable creativity and invention depends on mastery of both (1)
deep, solitary work characterized by immersive flow and (2) frequent
collisions with others and the serendipity emerging from intentional
design of the culture and spaces we work in.

The books and video I am highlighting in this chapter all relate to
moving the reader towards a more wholistic, organically healthy
immersion into life. Human thriving should always be the first goal,
because only this can support the kind of environments that people
never want to leave, if they are so lucky to find them. And that
instinct – to stay, to create there, with others, is an important key to
sustainability of any enterprise.

Though this flies in the face of the siloing tendencies that engulfed the
world in the 20th century, this is only a good thing – those silos need
to be overthrown.
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If you develop a habit of reading, thinking, living as though those
silos were not just silly, but very negative, you will find a richer life,
one where disembodied expertise, disintegrated world views, and our
culture’s current dearth of wisdom are foreign to your experience and
the experience of those in your circle of influence.
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4
Analysis :

A Motivating Exploration

Analysis is the careful, creative exploration of sets, functions, and mea-
sures. Nature and integrative, creative human intelligence collaborate
to generate or discover useful tools and insights.

While mathematics suggested and inspired by nature is useful in
understanding aspects of nature, it can by no means contain nature.
This is a good thing, for it suggests that nature is an infinite source of
ideas in mathematics, or at least I am convinced of that.

I think that it is often best to begin with the end, or goal, of a mission
very clearly in view. We will therefore begin by looking at the sets,
functions and measures we are interested in exploring and under-
standing.

Many of the figures in the book will be hand drawn, some free hand
and others using xfig, a gnu tool. Ideally, the figures would be on a
white board that I and a few students are gathered around, engaged in
a lively back and forth conversation. While I realize that hand drawn
figures are not to everyone’s taste, I do believe that they lend a little
bit of informality which in turn, will encourage some (hopefully quite
a few!) to get into the bare-handed exploration mode as they interact
with the book.

4.1 Examples of Sets and Functions

We begin with some examples: (1) and (2) illustrate graphs of functions
from R to R, (3) illustrates the boundary of a 3-dimensional set in R3,
(4)-(7) illustrate subsets (possibly supports of measures) in R2. The
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Figure 2: Examples of sets and functions in 2 and 3 dimensions.
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4.1 examples of sets and functions

questions that occur pretty naturally include:

How Big Is It?
1 How long are the sets shown in (1), (2), (4), (5), and (6)?
2 How much area does the set in (7) cover?
3 How much volume does the set in (3) enclose?
4 How long is the boundary of the set in (7)? (What exactly do we

mean by boundary?)
Zoomed In, What Does It Look Like?
1 Are there tangent lines (i.e do derivatives exist) at every point of the

graph shown in (1)?
2 What are the tangent cones of all the points in the set shown in (4)?

(What do I mean by tangent cone?)
3 If the function shown in (1) has a derivative in the neighborhood of
x, does that derivative have a derivative at x?

How close is one thing to another?
1 If we have a metric (for example, the Euclidean norm) in R2, can we

use that to create a metric (measure of distance) between subsets of
R2?

2 How many different (and useful) ways can we do this?
3 What are the implications of the choice of a particular metric, on the

solutions we obtain?
4 For example, we might consider (5) to be a bunch of elements of

the space of all circles in R2. Picking any two circles and defining
a distance so that a distance of zero means that they are the same
circle, which two circles would be the closest?

5 What would a convergent sequence of circles look like?
What does the space of all possible sets look like?
1 Is there a reason to restrict the sets we allow into our space of sets?

(Hint: yes, we will want only those for which reasonable measures
of length and area and volume can be constructed. It turns out this
does not include all possible sets, but does include all the sets you
might be able to imagine drawing.)

2 Is there a way to define spaces of sets that constrain the wildness
enough to allow analysis, but not so much that we cannot model
intricate, even crazy behavior?
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3 For example, what sorts of spaces could we construct in which (4),
(5), (6) and (7) are considered nice sets? Note that these sets are
certainly not graphs of functions, even discontinuous ones. (Can
you get these sets as images of discontinuous functions – I.e. =
f([0,1]) for some mapping from R1 into R2?

This is pretty open ended and not every question will be very produc-
tive, at least in the short term, so let’s look at 3 examples of the kinds
of questions we will examine.

1 How long is it?
2 How much does the area of a set E ⊂ R2 change when I map

the set from one place to another?
3 How wiggly can the graph of a function be?

4.2 How Long Is It?

We begin at the beginning, with subsets of the real line, R.

4.2.1 An Interval in R

If E ≡ [a,b] ⊂ R then we will agree that the length of E is just L1(E) =
b− a. This certainly matches what many would identify as the length.

But it is hard to make a case against defining the length of E to be
Eg ≡ g(b) − g(a), where g is some fixed strictly increasing or even
simply non-decreasing function on the real line. In fact, it will turn
out that this is a perfectly acceptable generalized length or measure.

For now, we will stick to lengths that are typically used, which corre-
spond to the 1-dimensional Lebesgue measure of sets in R1: L(E) = b− a.

56



4.2 how long is it?

4.2.2 An Interval in R2

If we have a line segment in R2, which we denote by [a,b] where
a,b ∈ R2, we would expect that the length is given by*

|b− a| =
√
(b1 − a1)2 + (b2 − a2)2.

If we translate and rigidly rotate the coordinate system so that a and
b are in the x-axis, with b1 > a1, we get

|b− a| =
√
(b1 − a1)2 + (b2 − a2)2

=
√
(b1 − a1)2 + (0− 0)2

= b1 − a1

Exercise 4.2.1. Sketch examples of intervals in R1 and R2 and ex-
plain what you have just read to somebody who has forgotten all the
mathematics they ever learned.

4.2.3 Length of Graph of a Nice Function

You might remember from calculus how to compute the length of a
graph of a continuously differentiable function f : R → R. If so, at
least the formula in Equation (1) will be familiar. First, suppose that

E ≡ {graph of f from x = a to x = b}

then

length(E) =
∫b
a

√
1+

(
df

dx

)2
dx (1)

Even if you remembered this formula, perhaps you don’t remember
the reasoning behind it†.

*In this book, | · | will correspond to the usual euclidean norm in Rn. Note that in
R1 this is equivalent to the absolute value function.

†Actually, Equation 1 is true even if f is merely Lipschitz.
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Exercise 4.2.2. Before reading the rest of this section, take a pencil and
paper and think about why it might be true. Hint: first figure this out
when y = f(x) = sx+ e, the line with slope s and y-intercept e

Intuitive Proof. The intuitive proof, which essentially assumes that
the function is differentiable everywhere and that this derivative is
continuous – the derivative itself does not change too quickly, can be
seen by observing that:

1 If we zoom way in, the little piece of the graph above the interval
[x, x+∆x] is the length of straight line from (x, f(x)) to (x+∆x, f(x+
∆x)). But f(x+∆x) = f(x) + df

dx(x) ∆x. So the length of that little piece
of the graph is

Length of f([x,∆x]) = |(x, f(x)) − (x+∆x, f(x+∆x))|

= |(x, f(x)) − (x+∆x, f(x) +
df

dx
(x) ∆x)|

=

√
(∆x)2 + (

df

dx
(x) ∆x))2

=

(√
1+ (

df

dx
(x))2

)
∆x

2 This implies that if define ∆x = (b−a)
M , we have a partitioning sequence

of the interval [a,b], {xi}Mi=0 given by xi = a+ i∆x, i = 0, 1, 2, ...M and
the length of the graph of f from a to b is:

length(E) = lim
M→∞

M−1∑
i=0

√
1+ (

df

dx
(xi))2∆x

=

∫b
a

√
1+

(
df

dx

)2
dx

58



4.2 how long is it?

To actually prove this result carefully, first we have to define what we
mean by length of a curve in R2.

We suppose that a curve Γ is parameterized by some interval in R.
I.e. γ : [α,β] → Γ ⊂ R2. Next we take any ordered set of points
P ≡ {yi}

NP
i=1 ⊂ [α,β] such that y1 < y2 < ... < yNP . Define P to be the

set of all such finite sequences of points in [α,β]. Now we are ready to
define the length of Γ . (See Figure (3) for a Sketch of the ideas.)

Definition 4.2.1 (Length of a curve in R2). We define the length of a
curve Γ by

Length(Γ) = sup
P∈P

(
LengthP(γ)

)
≡ sup
P∈P

NP−1∑
i=1

|γ(yi+1) − γ(yi)| (2)

Note that this definition does not depend on the differentiability of γ.

Exercise 4.2.3. Convince yourself that if P and Q are ordered se-
quences, then the ordered sequence P ∪Q generates a length sum
bigger than or equal to either P or Q.

Now the careful proof.

Careful Proof. We divide the proof into steps to make it easier to parse
the ideas:

1 Since the derivative of f is continuous on the compact interval [a,b],
there is a δε small enough that |x− y| < δε implies |dfdx(x) −

df
dx(y)| < ε.

2 Because df
dx is continuous on the compact interval [a,b], there is a

bound on the magnitude of the derivative on the [a,b]: dfdx(x) < K for
all x ∈ [a,b].

3 Choose M large enough that h ≡ |b−a|
M < δε.

4 Define xi = a+ i h for i = 0, 1, 2, ...,M and note that xM = b.
5 The mean value theorem that tells us for x,y ∈ [a,b], f(y) − f(x) =

(x− y)dfdx(w) for some x < w < y
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Figure 3: Sketch illustrating the idea of the curve length calculation.
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6 We can therefore conclude that:

|(xi, f(xi)) − (xi+1, f(xi+1))| =

√
h2 + h2

(
df

dx
(wi)

)2
= h

√
1+

(
df

dx
(wi)

)2
for some xi < wi < xi+1.

7 Notice that Steps (1) and (3) imply that as long as |u−w| < h, |dfdx(u) −
df
dx(w)| < ε. Assuming without losing any generality, that |dfdx(u)| >

F1 ≡ |dfdx(w)|,

|

√
1+

(
df

dx
(u)

)2
−

√
1+

(
df

dx
(w)

)2
| 6

√
1+ (F1 + ε)2 −

√
1+ F21

=
√
1+ F21

(√
1+

2F1 + ε

1+ F21
ε− 1

)

6
√
1+ F21

 1√
1+ 2F1+ε

1+F21

(2F1 + ε
1+ F21

ε

)

6
2F1 + ε√
1+ F21

ε

6 (2F1 + ε)ε

< (2K+ ε)ε

8 Claim: given h < δε, P = {a,a+ h,a+ 2h, ...,a+Mh = b}, and any
other Q ∈ P, we have that

LengthP(E) =
M−1∑
i=0

h

√
1+

(
df

dx
(wi)

)2
,

|LengthP(E) − LengthP∪Q(E)| < (b− a)(2K+ ε)ε

and therefore, we can conclude that

Length(E) = lim
M→∞

LengthP(E) =
∫b
a

√
1+

(
df

dx
(w)

)2
dw
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The crucial insight we are using is the uniform continuity of the
derivative of f, as noted in Step (1). The previous (step (7)) gives
us the exact thing we need – when h is small enough the thing we

are integrating (
√
1+

(
df
dx(w)

)2) changes very little within intervals of
length h.

9 We are done!

Exercise 4.2.4. Fill in the rest of the details to establish the claim in
the last step just above, Step (8).

4.2.4 Length of Nice Curves in Rn

Suppose that γ : [a,b] → Γ = γ([a,b]) ⊂ Rn is continuously differen-
tiable. Then an argument very similar to the above argument – but
now using the linear approximation definition of derivative, more
specifically the “little o(h)” property of the approximation – we get
that the length exists and equals:

Length(γ([a,b])) =
∫b
a

|γ̇(t)| dt (3)

The ingredients in the proof are:

1 Uniform continuity of the derivative on [a,b]: given any ε > 0, there
exists a δ1(ε) > 0 such that if |s− t| < δ1(ε) then |γ̇(t) − γ̇(s)| < ε.

2 Uniform approximation of increments by the derivative: Given any
ε > 0, there exists a δ2(ε) > 0 such that

|(γ(t+ h) − γ(t)) − γ̇(t)h| < εh when h < δ2(ε).

(This takes a bit to prove because this result is claiming that δ2 does
not depend on t.)
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Exercise 4.2.5. Using the facts immediately above, see what you can
do in outlining a proof of Equation (3)

4.2.5 From Lebesgue to Hausdorff: Measuring crazy lengths

For curve like sets in the plane that do not have nice parameterizations,
γ, we resort to the generalization of Lebesgue measure – the measure
you intuitively already understand in R – to 1-dimensional Hausdorff
Measure. We will dwell on this much more in the text, but here is an
explanation that transmits most of the ideas.

The basic idea behind 1-dimensional Hausdorff measure is to use
covers of the set we want to measure and then simply add up the
diameters of the cover to get an estimate of the 1-dimensional measure
of the set. Figure (4) illustrates the basic step. To get the actual 1-
dimensional measure of Γ , we have to take an infimum and then a
limit (or equivalently, a supremum):

Definition 4.2.2 (1-Dimensional Hausdorff Measure).

Eδ(Γ) ≡ {countable covers E of Γ , such that diamEi < δ for all Ei ∈ E}
H1δ(Γ) ≡ inf

E∈Eδ(Γ)

∑
Ei∈E

diam(Ei)

= inf
E∈Eδ(Γ)

H1E(Γ) (See Figure (4))

H1(Γ) ≡ lim
δ→0

H1δ(Γ)

= sup
δ

H1δ(Γ)

Exercise 4.2.6. Spend some time looking at this definition and the
Figure 4, and verify that the basic idea stated just above Definition 4.2.2,
is precisely what the definition is focusing on.
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Figure 4: A sketch illustrating 1-dimensional Hausdorff Measure. See
Definition (4.2.2) for the complete details, stated fairly concisely.
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4.3 Mapping Areas?

For this question, we assume that the function or mapping F, maps
R2 into Rn where n > 2: more succinctly, F : R2 → Rn. We will
further restrict ourselves to functions having derivative matrices, DF,
everywhere. This is not necessary, but for the idea in this initial
exploration, this is as much generality as we need.

4.3.1 Tiny Preamble on Measure Theory

We will get into measure theory in later chapters, but for now, the
following intuitive definitions should make sense from the discussion
above, and suffice for understanding the rest of this chapter:

Lk : Lebesgue measure formalizes what you already know intuitively
in 1,2 and 3 dimensions and extends it to all positive integral dimen-
sions. So L1([a,b]) is the length of the interval [a,b] and equals b− a,
L2([a,b]× [c,d]) is the area of the rectangle [a,b]× [c,d] ⊂ R2 and
equals (b−a)(d− c), and L3([a,b]× [c,d]× [e, f]) is the 3-volume of the
rectangular parallelepiped (or simply 3-rectangle) [a,b]× [c,d]× [e, f] ⊂
R3 and equals (b− a)(d− c)(f− e). You can see by analogy there is no
reason to stop at 3 dimensions. To get the volume of things that are
not rectangles, imagine tiling the set of interest with tiny rectangles
and adding up the volumes.

Hk : Hausdorff Measure is what we get when we generalize Lebesgue
measure – the measure you already really understand intuitively from
navigating the world from the time you are born until now – to the
case when the set is not a piece of a k-dimensional linear subspace.
You have already seen the definition in the case of 1-dimensional
Hausdorff measure. We will dive into this in more detail later – and
there are a lot more details – but you will not be misguided, for the
purposes of the first chapter, if you simply think of cutting the set into
pieces that are so small they are essentially pieces of Rk, measuring
them with Lk and summing. Of course, this is not sufficient in the
long run, though it is actually essentially correct in the case that (1)
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the set you are measuring is a piece of a smooth, k-dimensional subset
of Rn called a k-manifold, and (2) the limit of the above process of
cutting and summing is taken as the size of the pieces goes to 0.

4.3.2 When F : R2 → R2 is a linear Map

When F is linear – i.e. F(αx+βy) = αF(x) +βF(y) for all scalars α and
β and all vectors x and y – the area expands by the magnitude of the
determinant of F:

L2(F(E)) = |det(F)|L2(E)

In our case, F is a 2 by 2 matrix:

F =

[
F1 F2

F3 F4

]

Exercise 4.3.1. Show that F changes areas when it maps regions from
R2 to R2 by a factor of |det(F)|. Hints:

1 Convince yourself that the image of the unit square in R2, under F, is
a parallelogram with sides equal to the vectors:

u =

[
F1

F3

]
v =

[
F2

F4

]

2 Show that det(F) = det(Rθ · F) = where R is a rotation matrix given by

Rθ =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]

3 Use the fact that we can use a rotation matrix to rotate the image of
the square – the parallelogram with sides u and v – so that u lies on
the positive x axis. At this point, we can easily get the area of the
parallelogram. It is simply the length of u times the absolute value of
the y coordinate of the rotated v.
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4 Compute this y value:
a define u∗ ≡ (u∗1,u∗2) = ( F1

|u| ,
F3
|u|) : the unit vector in the direction of

u

b Define define up ≡ (−u∗2,u∗1) = (−F3
|u| , F1

|u|) : the unit vector orthogo-
nal to the direction of u, rotated π

2 counterclockwise.
c |y| then is |v · up| = |−F2F3+F4F1

|u| |

5 This implies that the area is |y||u| = |F4F1 − F2F3| which is the absolute
value of the determinant of F, as claimed.

Figure 5: Illustration of the change in area under a Linear mapping.

4.3.3 When F maps R2 to R2, one-to-one.

When F is nonlinear, but it is also differentiable, we can cut up the set
into tiny little bits that we map with the derivative since the derivative
is the local linear approximation. Showing this in detail is a fair bit
of work, but it will be easier to see and organize after you have a
more instinctive feel for derivatives and their precise approximation
properties. But the intuitively appealing statement made in the first
sentence is correct and can be stated more precisely this way:
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∫
E

|det(DxF)| dL2(x) =
∫
f(E)

dL2(y)

Figure 6: Illustration of change in area under nonlinear, differentiable,
1-to-1 mappings from R2 to R2.

4.3.4 When F maps R2 to R3, one-to-one.

We come to the case in which we are mapping from a lower to a higher
dimensional space. This makes things a bit more tricky, because we
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can no longer compute the determinant of DF. Instead, we have to
define something we will call the Jacobian.

More precisely, define JF =
√

det(DFT ·DF) where DFT is the transpose
or adjoint of DF. (Note: when DF is a square matrix, JF = |det(DF)|,
the absolute value of the determinant.) See Figure (7) for a sketch
illustrating this.

Key idea: Infinitesimal squares map to infinitesimal parallelograms:

1 Decompose E into little squares lined up with the coordinate axes,
with side lengths equal to some small h.

2 Let e1 be the unit vector in the x1 direction and e2 be the unit vector
in the x2 direction. So the little squares have side vectors he1 and he2.

3 Define hux ≡ DxF(he1) = h(DxF(e1)) and hvx ≡ DxF(he2) = h(DxF(e2)).
(Note that ux is the first column of DxF and vx is the second column
of DxF.)

4 So each tiny square in the set E ⊂ R2 is mapped to a little parallelo-
gram in R3 and we know that the area of the parallelogram is given
by the length of the cross product of the two vectors hux,hvx ∈ R3

defining the parallelogram, |hux × hvx|.
5 Because F maps from R2 to R3, h2JF = h2|ux × vx| = |hux × hvx|. See

the next exercise!
6 But ∑

E

|hux × hvx| →
∫
E

|ux × vx|dL2(x)

=

∫
E

JF dL2(x)

This is the reasoning (with a little more care) that allows us to conclude
that ∫

E

JF dL2 =

∫
F(E)

dH2(y)
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analysis : a motivating exploration

Exercise 4.3.2. Calculate to show that for if u, v ∈ R3 are the first and
second columns of the 3 by 2 matrix A, we have |u× v| =

√
det(At ·A)

Figure 7: Illustration of the change in area under 1-to-1 mappings
from R2 to R3.
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4.3 mapping areas?

4.3.5 When F maps R2 to R3, but not one-to-one.

These assumptions, in the title of the subsection, lead to what is known
as the area formula which not only holds for differentiable functions,
but also for the more general Lipschitz functions (Section 4.4). ‡

The new thing in this section is the fact we do not assume the mapping
is 1-to-1. This means we have to think about the cases when things
overlap. See Figure (8).

The result becomes:

∫
E

JF dL2 =

∫
F(E)

(∫
F−1(y)

dH0
)
dH2(y)

=

∫
F(E)

H0(F−1(y)) dH2(y)

where we note that H0 is just the counting measure, so that H0(Σ) is
just the number of points in Σ.

‡It also holds when the sets we are mapping between are subsets of general 2 and
3-dimensional rectifiable sets ... see Section 15.1.2.
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Figure 8: Illustration of the change in area under mapping from R2 to
R3 that are not necessarily 1-to-1.
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4.4 how wiggly is the graph of f?

4.4 How Wiggly is the Graph of f?

In this question, we will focus on f : [0, 1] ⊂ R → R that are also
Lipschitz:

|f(x) − f(y)| 6 K|x− y| for some K <∞ and all x,y ∈ [0, 1].

Such functions are general enough to include all functions which are
continuously differentiable on [0, 1]. But it also includes functions that
don’t even have a derivative df

dx at lots of points in [0, 1]. (Think about
the graph of the function y = f(x) = |x− 1

2 | to see that this function is
(1) Lipschitz and (2) the derivative jumps from −1 to 1 at x = 0.5.)

What we will mean by wiggly will be how fast derivatives are changing,
and more specifically, we will measure the wiggliness by the size of the
set Σ ⊂ [0, 1] where the derivative is discontinuous (where it jumps).

4.4.1 Constructing f so that Σ contains 2 points

This task is very simple. Figure (9) shows an example function where
Σ contains exactly two points:

Figure 9: An example of a Lipschitz function with H0(Σ) = 2.
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4.4.2 Constructing f so that Σ contains an∞ number of points

This task is a little more involved, but not hard once you see what
to do. We construct the function by first constructing a step function
h which we will integrate to get f, building into f the discontinuities
in the derivative at each step of h. As long as we control the sum of
the heights of the steps, the derivative is bounded and the function
remains Lipschitz.

In a bit more detail:

1 Define h(x) = 1− 1
2i−1

for x ∈ [1− 1
2i−1

, 1− 1
2i
), for i = 1, 2, ....

2 h(1) = 1. (But, because we are integrating to get f, this one point does
not matter.)

3 Define f(x) =
∫x
0 h(y)dy where the function h was defined in the

previous step.
4 This function f contains discontinuities in the derivative at every point

of the form x = 1− 1
2i
i = 1, 2, 3, ....

5 Thus, we have a Σ ⊂ [0, 1] with an infinite number of points in it.

See Figure (10) to see an illustration of h and f.

4.4.3 Constructing f so that Σ is dense in [0, 1]

In this example, we construct a function which has a dense set of points
in [0, 1] where the derivative is not defined because the derivative
has a discontinuity there. Remarkably, the derivative exists and is
continuous at every point not in Σ!

See Figure (11)
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4.4 how wiggly is the graph of f?

Figure 10: An example of a Lipschitz function with H0(Σ) =∞.
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analysis : a motivating exploration

Figure 11: An example of a Lipschitz function with Σ dense in [0, 1].

76



4.4 how wiggly is the graph of f?

4.4.4 Rademacher Implies Σ is not too big

How big can the set Σ be – that is, how big can H1(Σ) be? Since
Σ ⊂ [0, 1] it is obvious that H1(Σ) 6 1.

In fact, a famous theorem of Rademacher’s – unsurprisingly known as
Rademacher’s theorem (See Theorem 15.1.1) – tells us that H1(Σ) = 0!

Exercise 4.4.1. Show that H1(Q1) = 0. Hint: assume the following
fact – if E ⊂ ∪iEi, then H1(E) 6

∑
iH

1(Ei). Apply this to the case that
E = Q1 and Ei = (qi −

ε
2i

,qi + ε
2i
). Notice we can choose ε as small as

we like.

4.4.5 Discussion of Wiggliness

We have chosen a narrow definition of wiggliness in this section
in order to ask more precise questions. There are of course many
different measures of irregularity, oscillation, roughness or wildness.
An example would be the integral of the absolute value of some
derivative of a function. Or it might be the size of the minimal K in
the definition of Lipschitz. Or the dimension of the set of points where
the function is not differentiable or continuous.

This general area of study is called regularity theory and is often very
challenging. A famous example is the paper that Fred Almgren wrote
on the regularity of minimal surfaces of dimension k in Rk+m where
m > 2. The paper was famously difficult and long. Very long. In fact
for many years it circulated as a set of mimeographed notes about 1600

pages long! Later his widow (and first student), Jean Taylor, and his
fourth student, Vladimir Scheffer, collaborated on creating a published
book containing the paper. The result was (and is) 972 pages long.

We will return to the discussion of regularity from time to time, but
this tiny taste does give a sense of the intricacy that can arise when
studying regularity.
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5
Analysis in a Nutshell :

20 Short P ieces

Mastery of anything involves practice founded on understanding
which components are central, foundational and which components
are derivative, produced by the action of those other fundamental,
foundational components.

This leads to a minimalistic set of tools – the collection of a few things
with which a master can either (1) solve any problem directly or (2)
quickly craft the particular tool for the particular task at hand. And
this minimalism strongly supports the experience of creative flow.

Though this succinct set of tools varies from master to master, each
will invariably have a few key tools and insights they use over and
over, more or less as extensions of themselves when they are in the
state of flow.

The next section contains my own (current) list of 20 things: the details
might escape the less experienced readers, but that is OK because
those details are the goal of this course! The list is intended to give
you an idea of the landscape the book will explore, as well as what
the approximate minimal list I have looks like.

After these 20 pieces, I will list the ideas these pieces are founded on,
in an attempt to reduce the ideas to the true core, the essence. This
reduced list is always under development, in that my own understand-
ing and perspective evolves and shifts over time.

Note: Because the geometric/analytic universe is big and impossible
to capture in a linear story – first a, then b, then c, etc – the next level
up in descriptional complexity is used. I see what I am transmitting
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analysis in a nutshell : 20 short pieces

here as the centers of an ε-net* of the space of insights and tools I have
explored well, where ε is not too big.

5.1 20 Pieces

Convergence, continuity, connectedness, and compactness
... and the little bit of metric space theory needed for everything else:

ρ(x, z) 6 ρ(x,y) + ρ(y, z) where ρ is a metric

Understanding of finite dimensions, linearly
I.e. Linear maps and subspaces

Ax = b where A : Rn → Rm is a linear map,

and we often think about A in terms of a matrix representation of A.
Derivatives as linear approximations

F(x+ h) − F(x) = A(x)(h) + o(h)

where A(x) = DxF, the derivative at x, o(h) = “little o of h” and means
that g(h) ≡ F(x+ h) − F(x) −A(x)(h) satisfies |g(h)|

|h| → 0 as |h|→ 0.
Inverse and implicit function theorems

DxF continuous and invertible implies F : Rn → Rn invertible at x

The implicit function theorem follows from the inverse function theo-
rem.

Outer measures, in a nutshell
The outer measure theory approach is both very simple and very
powerful.

µ : 2X → [0,∞]

µ(∅) = 0

E ⊂ ∪iEi ⇒ µ(E) 6
∑
i

µ(Ei)

µ(F) = µ(F∩ E) + µ(F∩ Ec) ∀ F ∈ 2X ⇒ E measurable
*An ε-net of a set, is a set of points, so that no point in the set is more than a

distance ε from one of the points. Putting it another way, if that set is used as centers
of closed balls of radius ε, the union of those balls will cover the set.
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5.1 20 pieces

Rectifiable sets and the measures they support

gHk Wk

where g is some density function, Hk is k-dimensional Hausdorff
measure and Wk is a k-rectifiable set in Rn, k 6 n.

Weak Convergence

(functions)
∫
φi dµ →

i→∞

∫
φ̃ dµ (written φi ⇀ φ̃)

(measures)
∫
φ dµi →

i→∞

∫
φ dµ̃ (written µi ⇀ µ̃)

This notion of convergence depends on integration, so it permits much
wilder behavior to “converge”.

Basic convergence results for integrals

(Fatou’s Lemma)
∫

lim inf
k

fk dµ 6 lim inf
k

∫
fk dµ

... and the other two theorems (bounded and monotone convergence
theorems) telling us how sequences of functions and integration inter-
act..

Holder ’s Inequality

∫
|fg| dµ 6

(∫
|f|p dµ

) 1
p
(∫

|g|q dµ

) 1
q

which includes the famous Schwarz inequality as a special case, which
in turn is an inner product on function spaces, leading to Hilbert
spaces.

Cover ing Theorems
Theorem 5.1.1 (5R-covering). Suppose that B is a collection of balls in
Rn whose radii are uniformly bounded above. Then there exists a countable
subcollection of pairwise disjoint balls, {Bi}Ni , N 6 ∞ whose dilation by a
factor of 5, {5Bi}Ni covers the union of the original collection of balls:⋃

B∈B
B ⊂

⋃
i

5Bi
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This is an example of a very useful covering theorem. Another, much
more complicated one (to prove) is the Besicovitch Covering Theorem.

Stokes For mula ∫
∂E

ω =

∫
E

dω

Area/Coarea For mula for F : E ⊂ Mm → Nn∫
E

g JF dHm =

∫
Nn

(∫
F−1(y)

g dHmax(0,m−n)

)
dHmin(m,n)

where Mm is an m-rectifiable set, Nn is an n-rectifiable set, and F is a
Lipschitz mapping from Mm to Nn.

Gauss-Bonnet ∫
M

κ(x) dHm(x) = Hm(∂Bm+1(0, 1))

Where M is an m-manifold diffeomorphic to ∂
(
Bm+1(0, 1)

)
, κ is the

Gauss curvature on M and Hm is m-dimensional Hausdorff measure.
This is an example of how integration and local properties interact.

Legendre-Fenchel transfor m

f∗(k) ≡ sup
x

{〈k, x〉− f(x)}

where x ∈ Rn, k ∈ {dual space of Rn} (row vectors), f(x) is the function
f : Rn → R we are computing the Legendre-Fenchel transform of, and
f∗(k) is the Legendre-Fenchel transform of f.

Fourier transfor m

f̂(k) =

∫
Rn
f(x)e−i2πkx dx (Fourier transform)

f(x) =

∫
(Rn)∗

f̂(x)ei2πkx dk (inverse Fourier transform)

The areas of pure and applied harmonic analysis flow from this trans-
form. These areas, in turn, have had a huge impact in the pure and
applied sciences. ((Rn)∗ is the dual space to Rn which we can usually
just think of as Rn because a Riesz-type representation theorem tells
us they are essentially identical. See Theorem (5.1.2) below.)
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5.1 20 pieces

Banach and Brouwer Fixed Point Theorems
Assuming F : X→ X and X is a Banach space, we have

|F(x) − F(y)| 6 k|x− y| with k < 1 ⇒ ∃!x such that F(x) = x

where ∃!x should be read “there exists a unique x”.
The Brouwer Fixed Point Theorem says the closed unit ball in Rn,
mapped continuously to itself – F : B̄n(0, 1) → B̄n(0, 1) – must con-
tain a fixed point x: again, ∃x such that F(x) = x. In this case though,
the fixed point might not be unique.

Linear Flows in Rn

ẋ = Ax ⇒ x(t) = eAtx0

where x ∈ Rn, A is an n by n matrix and x0 = x(0)
Isoper imetr ic inequality

Hn(E) 6 C(n)
(
Hn−1(∂E)

) n
n−1

where E ⊂ Rn. There are many variations of this inequality that come
up over and over in analysis.

Weak Differentiation
A function g such that: ∫

φg dx = −

∫
∂φ

∂x
f dx

holds for all smooth, compactly supported φ is called the weak deriva-
tive of f.
This theme of generalization takes in a great deal of territory. This
particular case – generalizing derivatives using the product rule – is
just one example of many. Sobolev spaces – spaces of functions having
weak derivatives in Lp – are used heavily in the analysis of partial
differential equations.

Riesz representation
There are many different analogs of the following theorem, varying as
the linear spaces of interest vary.
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Theorem 5.1.2 (Reisz Representation Theorem). Suppose we define H =

set of all functions f : R → R such that
∫

R |f|2 dx < ∞. Define ||f|| =(∫
R |f|2 dx

) 1
2 . Suppose that F : H → R is linear and supf:||f||61 F(f) < ∞.

Then:
∃gF ∈ H such that F(f) =

∫
gFf dx

5.2 The Essence

A roughly multiscale understanding of geometric analysis and its
applications makes sense due to the structure of the area. Geomet-
ric analysis is not a linearly organized thing, but rather a complex
system of ideas, needing at least a graph or network structure, but
more likely a hypergraph structure to represent the relationships and
dependencies in the subject. The above 20 items follows roughly from
the assumption of a graph like structure. As mentioned above, they
form my current ε-net for a not too big ε.

What follows here is an even simpler, minimalist synopsis. While it
is a bit harder to grasp – it is really a cryptic synopsis for those with
more experience – it is still useful before you reach mastery, as a map
to the place you are aiming for.

5.2.1 The synopsis

Geometric analysis: the nuanced study of sets,
mappings and measures involving linear and non-
linear spaces.

The Three
1 Linear Spaces, Subspaces and Mappings: mastery of this founda-

tion for analysis precedes mastery of geometric analysis
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5.2 the essence

2 Derivatives: linear approximation and a great deal more ... ex-
tremely rich set of ideas and tools.

3 Measures: sets, mapping, coverings, interaction with spaces and
function spaces through integration.

Three More
1 Approximation: understanding crazy things by sequences of nice

things, built on a minimalist set of tools from metric spaces.
2 Transformation: Fourier transform, Legendre-Fenchel transform,

local transformations of all sorts
3 Topology and integration: invariants and global/local connections.

Why Nuance?
1 Linear and nonlinear, linear vs nonlinear: nice nonlinear = locally

linear, not nice nonlinear = singular = not locally linear.
2 Finite dimensional vs infinite dimensional: investigations into

what stays the same and what changes when you move to infinite
dimensions, opens a rich and fascinating wilderness.

Concrete Examples and Problems!
1 Barehanded study of crazy sets, functions, measures: putting

what you know, right now, at this moment, to work is crucial to the
development of mastery. This can take many different forms, from
something that is very applied to something that is very esoteric.
But work on very concrete questions of one sort or another is a
central occupation of those working for mastery.

2 Immersion in applications, at least some of the time: even if you
are not interested in applications like physics or economics or chem-
istry or biology, grounded contact with applications in those areas
is invaluable as a source of completely new and unexpected ideas
for even very pure, esoteric development.
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6
Some Other Things :

Samples from Geometric Analysis

Though to some, geometric analysis is the rather narrow area of
analysis on manifolds, I take the other viewpoint that it is anything
that lives at the extraordinarily rich, even infinite, interface between
geometry and analysis, often inspired by broadly ranging applications.

In this short chapter, I will sample this rather vast region of the
mathematical universe – sometimes mentioning little more than the
name of the area or set of problems studied in the area. The purpose
of this list is to give a sense for the expanse and to stimulate curiosity
how the comparatively limited list of ideas in the previous chapter
can really form the foundation for the prodigious range of ideas, tools,
and problems.

6.1 Samples

Stochastic Geometr y Suppose you have some fixed figure – per-
haps a circle of fixed radius – that you randomly drop on a grid of
parallel lines separated by twice the diameter of the object. What is the
probability that the object will intersect one of the lines? What is the
expected number of intersections if you average over all possible ran-
dom drops? This is a simple example of the type of problem studied
in stochastic geometry. The subject gets very involved, complicated
and is therefore quite fascinating.

Analysis on Graphs/Networks Instead of having the sets, func-
tions and measures defined in or on Rn, we look at the case in which
the set of points are vertices of a graph with a prescribed set of edges
and edge weights. This is a rich arena for development and much
newer than the classical analog on Rn. Examples would include dif-
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some other things : samples from geometric analysis

Figure 12: Random intersections with a horizontal grid, showing
multiple throws without rotation.

fusion on graphs, which has actually been around for awhile for the
very special case of graphs that arise from the discretization of R2 and
R3.

Pseudo-differential operators in Rn Let us recast the differen-
tial equation

d2

dx2
f(x) − 3

d

dx
f(x) + 4f(x) = g(x)

as an operator equation:
Df = g

where we define the differential operator D by

D ≡ d2

dx2
− 3

d

dx
+ 4.

Now, suppose we take the Fourier transform. We denote the Fourier
transform of a function h(x) by ĥ(k). We find that the original differ-
ential equation transforms into:

(i2π)2k2f̂(k) − 3(i2π)kf̂(k) + 4f̂(k) = ĝ(k)

and we see that, remarkably, the differential operator in x has been
transformed into multiplication by a polynomial in k in Fourier space! So
we have:

Df = g ⇒ (−4π2k2 − 6iπk+ 4)f̂(k) = ĝ(k)
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6.1 samples

Figure 13: Suggestive cartoon of a graph in R2, the metric space it
generates and resulting function space. This works whether or not the
graph can be embedded in a vector space.
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some other things : samples from geometric analysis

While this opens up immediate ideas for solving differential equations,
it also generalizes the space of differential operators. Noticing that
taking m derivatives in space is the same as multiplying the Fourier
transform by (i2πk)m, we can ask what differential operator corre-
sponds to multiplication, in Fourier space, by (i2πk)1.5? The answer is,
the pseudo-differential operator d1.5

dx1.5 . Why this is cool, other than the
obvious coolness of generalization, is a longer story.

Vector Fields and Flows on Rn You may have been introduced
to the dynamical systems point of view when you took the first course
on differential equations. The basic idea is that at every point x ∈ Rn,
you are given a vector field v(x). The solution to such a vector field
is a family of curves that are everywhere tangent to those vectors.
In fact, there are time parameterizations on those curves, γ, so that
γ̇(t) = v(γ(t)). Often, we put all these curve together to get a time
dependent diffeomorphism of φ(·, t) : Rn → Rn, called the flow
generated by the vector field. This is a very large, very active area of
research that is such because so many real phenomena lend themselves
to being modeled by dynamical systems of one sort of another. For
beginners, I recommend Strogatz [40]. The next step up includes
many books, but James Meiss’ book, Differential Dynamical Systems is a
very good next step up, [30].

Ergodic Theor y on Rn (or n-manifolds) Recalling your expo-
sure to vector fields in differential equations (or the previous para-
graph), imagine the case in which the flow that gets generated, φ(x, t),
is confined to some bounded region in space, M. Or perhaps, the
vector field is on a compact manifold, M, like the unit n-sphere, or a
torus, or some bounded energy surface in a conservative mechanical
system. Suppose x ∈M represents the state of the system and suppose
there is some quantity f that you can observe in the state space. When
is this asymptotic time average of the observable f

lim
T→∞

1

T

∫T
0

f(φ(x0, t))dt

equal to space average ∫
M

f(x)dµφ
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6.1 samples

Figure 14: Vector fields and the flows they generate: an example in
R2.
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some other things : samples from geometric analysis

for some flow invariant measure* µφ? This is a rather old, physics
inspired question that gave rise to an entire subfield of analysis, called
ergodic theory. It is very geometric, filled with interesting ideas.

Wavelets Inspired by Fourier analysis, other families of orthogonal
functions – but now with bounded sets on which they are non-zero
– have been invented for the purposes of efficient representation of
functions and processes. This entire area is a huge industry actually,
driven forward by the large number of practical applications in image
and signal processing and the fact that both the pure and the applied
aspects of wavelet analysis yeild fascinating questions.
The initial challenge was to invent these things called wavelets which
were smooth and compactly supported†. One wanted a way to have
descriptions of functions which were bounded in both the spatial
domain and the frequency domain. In the well known Fourier case,
this is impossible. In fact, the precise statement of this is equivalent
to the uncertainty principle in quantum mechanics – the smaller the
support of the spatial representation, the bigger the support of the
frequency representation and vice versa – the smaller the support of
the frequency representation, the bigger the support of the spatial
representation.

Partial Differential Equations on Manifolds PDEs are a truly
vast area of analysis, inspired and driven forward by problems in
physics, engineering, chemistry, biology and just about every other
science. Deriving their name from the fact that these equations involve
partial derivatives of functions with at least two independent variables,
the resulting study has generated an enormous amount of creativity
and computation. Even the linear equations like

utt = c(uxx + uyy) (Wave Equation in R2)

*To explain flow invariant, define Ft(x) = φ(x, t) – the map defined on M for a
fixed t. We say that ν is invariant under the flow if ν(F−1t (E)) = ν(E) for all E and all
t.

†The support of a function is the closure of the points where the function is
nonzero. Compactly supported means that this support set is bounded.
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Figure 15: Fourier (with its sinusoidal basis functions) versus Wavelet
(with its compactly supported basis functions). In this case I am using
the Haar wavelets with are not smooth and have been known for a
long time. They are nevertheless quite useful for some signal and
image tasks.
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some other things : samples from geometric analysis

and

ut = c(uxx + uyy) (Diffusion (or Heat) Equation in R2)

are interesting because of the dependence of their solutions on the
shape of the region in which we are solving the equations. After com-
pleting the present course (or another like it), I cannot recommend a
better book that Craig Evans’ Partial Differential Equations published by
the AMS. PDEs on manifolds – what some people call geometric anal-
ysis – is all of the usual PDEs, but now on manifolds. The properties
of the solutions are enriched by the interaction of the geometry and
global topology of the manifold and local properties of the differential
operator.

Properties of the Navier-Stokes PDEs in R3 Here I single out
one system of PDEs – the Navier Stokes equations modeling fluid flow
in R3 – because this single system of PDEs has generated an enor-
mous amount of work in analysis. In fact settling the properties of
this equation is one of the Clay Mathematical Institute prize prob-
lems. The equations are really just conservation of material (mass) and
conservation of momentum – F = ma – translated into fluid terms:

∂

∂t
(ρ) +∇ · (ρu) = 0

∂u
∂t

+ (u · ∇)u) = −
1

ρ
∇p+ ν∆u + f(u, t)

Har monic Measures and their str ucture Returning to a sim-
ple, linear PDE given by

∇ ·∇φ = 0 (also written ∆φ = 0)

we note that this is incomplete as an equation until we specify (1)
where we want to solve this problem and (2) what the boundary
conditions are:

∇ ·∇φ = 0 ( for all x ∈ E)

φ(x) = f(x) ( for all x ∈ ∂E)
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It turns out that the values on the boundary, given by f, determine
the solution φ uniquely. This gets interesting when we realize that for
each point x ∈ E, there is a probability measure µx,E such that

φ(x) =

∫
∂E

f(y) dµx,E(y).

We notice that µx,E does not depend on f. The properties of µx,E and
their dependence on E is a large, fascinating area of study. Example of
a cool property: if you set a particle free to take a random walk at x,
then the probability of it hitting P ⊂ ∂E first is exactly µx,E(P)! I can
recommend no better book than Harmonic Measure by John Garnett
and Don Marshall.

Concentration in High Dimensions Concentration of measure
phenomena is part of the strange and wonderful properties of proba-
bilities and measures in very high dimensions. Here are a couple of
interesting, initially surprising facts:
• A Lipschitz function on the unit Sphere in Rn, for n very large (for

example n = 106, 109, or 1012) is almost constant – that is, if you
choose a point at random, the probability that it will be very close
in value to the median value of the function, f̂, is very, very high:

P({x : |f(x) − f̂| > ε}) < δ

where, as n→∞ we can make both ε and δ go to zero, together.
• As the dimension diverges, the probability of a strip of the unit

sphere within epsilon of any given great circle, C, goes to 1:

P({x : d(x,C) < ε})→ 1

we note that the probability does not depend on which great circle
we pick.

The phenomena of concentration of measure and probability in high
dimensions show up all over the place in statistical learning theory
(the foundation for, and mathematical core of, machine learning) and
the growing industry created by sparse representation and sparse
inverse problems.
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Figure 16: Harmonic measures are a rich source of questions for
geometric analysts!
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Figure 17: Somewhat cryptic explanation of concentration of measure
in the unit sphere in high dimensions.
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Stochastic flows on rectifiable sets Flows in which there are
stochastic driving terms, or stochastic coefficients are useful in the mod-
eling of all sorts of physical phenomena. While this area seems wide
open – I am having difficulty finding papers addressing these ideas –
there is work on nonsmooth analysis on smooth manifolds, which is at
least something of a cousin to the investigations of stochastic flows on
non-smooth sets. See the papers by Ledyaev and Zhu that can be found
here: http://homepages.wmich.edu/~zhu/papers.htm. To imagine
what I see here, think of the 2-dimensional graph of a Lipschitz func-
tion f : R2 → R, in the 3-dimensional graph space, R3 = R2 ×R and
imagine a stochastic vector field on that set. Perhaps a simpler case,
containing all the essential features, is a random walk in the graph
of the same Lipschitz function f in R3. This leads to diffusion on
the graph. Here is an example of a paper addressing diffusion on a
nonsmooth set https://arxiv.org/pdf/1312.5882.pdf. While this
seems to be somewhat of a boutique area of work, I am convinced that
it is very promising especially when the approach becomes a hybrid
computational/experimental and theoretical approach.

Complex Dynamics and Confor mal Mappings A very large
area of work arises from complex analysis and the richness of analytic
function theory. In this book we will not deal with complex analysis,
and in fact the special nature of analytic functions makes them a bit
disjoint from the version of geometric analysis we will study. Yet the
beauty of this area and the richness of the results, compels me to
include this rich garden in this list. In fact the study of Harmonic
measures, mentioned above, is inseparable from the study of complex
analysis. Conformal maps – maps that locally preserve angles – have
generated a great deal of work. To mention only one very remarkable
and useful result, there is the Riemann Mapping theorem:
Theorem 6.1.1 (Riemann Mapping Theorem). Let Ω be a simply con-
nected region in C that is not equal to the entire complex plane. Then there is
a conformal map φ, mapping Ω onto D, the unit disk in the complex plane.
The ramifications of this result are rather large. See for example
Pommerenke’s book Boundary Behavior of Conformal Maps [33].
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6.1 samples

Figure 18: The Riemann Mapping Theorem: even crazy simply con-
nected sets are conformally equivalent to the unit disk!
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6.2 Other Things

So what is geometric analysis? That is, what is it beyond “whatever
lies at the intersection of analysis and geometry”? If forced to try to
make it more precise than that, I would say that it is the attitude, the
state of mind, the perspective of the mathematician exploring and
creating and illuminating what he or she finds for others. Perhaps it is
the state in which you see and create, the one where language seems
to just get in the way.

Whatever it is, perhaps it cannot withstand too much dissection – like
some sort of uncertainty principle, when you have taken it apart to see
the pieces, you find you have a pile of pieces and no understanding of
the living, creating thing those pieces comprised.
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7Just Enough Metric Spaces

In this short chapter, I cover the essentials from metric spaces we will
need for the rest of the book. While some readers may have been
fortunate enough to have had a “proofs” course using metric spaces
as a vehicle for teaching how to create proofs, it is likely that some
have not.

The basic idea in studying metric spaces is to see what we can gather
about sets of points when all we know is the distance between points.
It turns out, we can create very important tools that will be useful all
over the geometric analysis landscape.

At the end of the chapter we devote a few sections to the extra things
we get when the metric space is also a vector space and the distance is
the vector norm. Sometimes this norm will come from a dot product
(called an inner product) and sometimes not.

7.1 What is a Metric Space?

A metric is a function on X× X – you stick in two points, and out
pops the distance between them. Anything that satisfies three simple
axioms for points in X, is a metric:

Definition 7.1.1 (Metric). A function ρ : X×X→ [0,∞) satisfying:

1 ρ(x,y) > 0, with ρ(x,y) = 0⇔ x = y

2 ρ(x,y) = ρ(y, x)
3 ρ(x, z) 6 ρ(x,y) + ρ(y, z) (triangle inequality)
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is a metric on X.

The space X together with ρ form a metric space.

7.2 Open and closed Sets

The basic entity in metric spaces are the open (and closed balls) with
some fixed radius.

7.2.1 Balls in a metric space

Definition 7.2.1 (Metric Balls). We define open and closed balls of
radius r > 0, and center y ∈ X to be all the points x ∈ X whose distance to y
is, respectively, (1) less than or (2) less than or equal to r:

Open Ball : B(y, r) ≡ {x : ρ(y, x) < r}
Closed Ball : B̄(y, r) ≡ {x : ρ(y, x) 6 r}

7.2.2 Open Sets and Closed Sets

Definition 7.2.2 (Open and Closed Sets). We say a set E is an open set
if for every point x ∈ E, there is a radius r > 0 small enough that B(x, r) ⊂ E.
A set E is a closed set if its complement, X \ E = Ec, is open.

Exercise 7.2.1. Prove that the union of an arbitrary (possibly uncount-
able!) collection of open sets is open.

Exercise 7.2.2. Prove that the intersection of a finite collection of open
sets is open.
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Figure 19: The Open ball is an open set: see Exercise 7.7.3.

7.3 Convergence, Continuity and Completeness

Definition 7.3.1 (Convergence). We say that the sequence {xi}
∞
i=1 ⊂ X

converges to x∗ if

lim
i→∞

ρ(xi, x∗) = 0

We sometimes write this as xi → x∗

Definition 7.3.2 (Inverse Image). For f : X → Y, we define f−1(A) ≡
{x | f(x) ∈ A ⊂ Y} and we refer to f−1(A) as the “inverse image of A under
f”, even if there is no function such that g(y) = f−1(y) for all y ∈ Y, i.e.
even if f is not invertible.

Definition 7.3.3 (Continuity I). A function mapping from one metric space
X to another metric space Y (X could equal Y) is said to be continuous if, for
every open set E ⊂ Y, the inverse image f−1(E) is open in X.
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Definition 7.3.4 (Continuity II). A function mapping from one metric
space X to another metric space Y (X could equal Y) is said to be continuous
if:

xi → x∗ ⇒ f(xi)→ f(x∗)

Exercise 7.3.1. Prove that the two definitions are equivalent. That is
that

{Continuity I ⇒ Continuity II}

and
{Continuity II ⇒ Continuity I}

If we want to talk about the continuity of a function or mapping on a
set that is not the entire space – that is, we define f on a subset of the
space X – then we have to modify the definitions a little bit in the case
that the set E is not open.

Definition 7.3.5 (Continuity I*). A function mapping Ω ⊂ X to another
metric space Y (X could equal Y) is said to be continuous if, for every open set
E ⊂ Y, the inverse image f−1(E) = Ω∩ F for some open F ⊂ X.

Exercise 7.3.2. Show that the starred version of Continuity I is equiva-
lent to the unstarred one when Ω is an open subset of X

Remark 7.3.1 (Continuity II*?). Note: when f : Ω ⊂ X→ Y, the definition
of continuity using sequences is unchanged, so there is no new “Continuity
Definition II*”.

Definition 7.3.6 (Cauchy Sequences). A sequence {xi}
∞
i=1 ⊂ X is a

Cauchy sequence if, for every ε > 0, there an N(ε) such that i, j > N(ε)⇒
ρ(xi, xj) < ε.

Definition 7.3.7 (Completeness). We say that a metric space (ρ,X) is
complete if every Cauchy sequence has a limit in X. That is, if {xi}∞i=1 ⊂ X is
a Cauchy sequence, there exists a point x∗ ∈ X such that xi → x∗.

106



7.4 compactness

Definition 7.3.8 (Continuity III, ε, δ-style). A function mapping from
Ω ⊂ X to another metric space Y (X could equal Y) is said to be continuous if
for every point x ∈ Ω and ε > 0, there is a δ(x, ε) > 0 such that

f(B(x, δ(x, ε))∩Ω) ⊂ B(f(x), ε)

Exercise 7.3.3. Show that Continuity III is equivalent to Continuity I*

Figure 20: Continuity, ε, δ-style.

7.4 Compactness

A fundamental concept in metric spaces is the idea of compactness. In
Rn it will turn out that a set is compact if and only if it is closed and
bounded.
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Definition 7.4.1 (Compact Sets K ⊂ X). A set K ⊂ X is compact if every
open cover of K contains a finite subcover. That is, if a collection of open
sets O ≡ {Oα}α∈A covers K – or succinctly, K ⊂

⋃
α∈AOα – there is a finite

subcollection {Oαi }
N
i=1 ⊂ {Oα}α∈A such that K ⊂

⋃N
i=1Oαi .

We now want to talk about maximizing and minimizing functions
which map points in a metric space to the real numbers. To do that
we need to define max, min, sup, and inf.

To begin with, we consider a non-empty subset E of the real numbers
which is bounded above and below:

−∞ < a < b <∞ and a < x < b for all x ∈ E

Definition 7.4.2 (Supremum, sup). Suppose we have a subset of the real
numbers, E ⊂ R. An upper bound u is any real number so that x ∈ E ⇒
x 6 u. We define the set of upper bounds for E to be UE. It is clear that UE
is non-empty and is bounded below by elements of E. It is a property of the
real numbers that every such set has a least element: there is a u∗ ∈ UE such
that u∗ 6 u for all u ∈ UE. We define the supremum of E to be u∗. More
succinctly, the sup(E) = the smallest upper bound.

Definition 7.4.3 (Infimum, inf). Suppose we have a subset of the real
numbers, E ⊂ R. A lower bound l is any real number so that x ∈ E⇒ x > l.
We define the set of lower bounds for E to be LE. Again, LE is non-empty
and bounded above. the same property of the real numbers implies that LE
has a greatest element l∗ ∈ LE such that l∗ > l for all l ∈ LE. We define
the infimum of E to be l∗. More succinctly, the inf(E) = the greatest lower
bound.

If E is a set that is not bounded above, we say that sup(E) =∞ and if
E is not bounded below, inf(E) = −∞.

Exercise 7.4.1. Show by example that not every set of real numbers
E, with sup(E) <∞ has a maximum element e∗. That is there might
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not be an e∗ ∈ E such that e 6 e∗ for all e ∈ E. Define a minimum by
analogy and show that it might not exist, even when inf(E) > −∞.

Definition 7.4.4 (ε-net). Given a set E in a metric space X, we say that
AεE ≡ {xα}α∈A is an ε-net for E if

E ⊂
⋃
α∈A

B(xα, ε).

I.e. the union of the ε-balls, centered on the points in AεE, covers E. In other
words, every point in E is less than epsilon away from some point in AεE

Definition 7.4.5 (Totally Bounded). A set E ⊂ X is totally bounded if, for
every ε > 0, there exists a finite ε-net for E, AεE – i.e. the number of points
in AεE is finite.

Theorem 7.4.1 (Compact = Closed and Totaly Bounded). Suppose that
X is a complete metric space. A subset K ⊂ X is compact if and only if it is
closed and totally bounded.

Exercise 7.4.2. Prove the “only if” part of Theorem (7.4.1). I.e. prove
that compactness of K implies K totally bounded and closed.

Theorem 7.4.2 (Compactness implies Convergence). Suppose that we
have a sequence {xi}

∞
i=1 ⊂ K, where K is a compact subset of the complete

metric space X. Then there is a convergent subsequence: There exists x∗ ∈ K
and a monotonically increasing k : N→N such that

xk(i) →
i→∞

x∗.

Exercise 7.4.3. Prove Theorem (7.4.2). Hint: use the total boundedness
of K to generate a Cauchy sequence. Use the completeness to get a
limit in X use the closedness of K to get that this limit is in K.

Theorem 7.4.3 (Compactness implies Accumulation). Suppose that A ⊂
K, where K is a compact subset of the metric space X and A is an infinite set (
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i.e. it has an infinite number of points in it). Then there exists x∗ ∈ K and a
one-to-one function i : N→ ai ∈ A such that

ai →
i→∞

x∗.

Such a point x∗ is called an accumulation point of A.

Exercise 7.4.4. Prove Theorem (7.4.3).

Definition 7.4.6 (Separable). A metric space X is separable if it contains a
dense countable subset. I.e. it contains a set F = {fi}

∞
i=1 ⊂ X such that, for

any x ∈ X and any ε > 0, there is a point fk ∈ F such that ρ(fk, x) < ε.

Exercise 7.4.5. Show that any open cover of a set in a separable metric
space has a countable subcover.

Exercise 7.4.6. (Challenge) Prove the “if” part of Theorem (7.4.1). I.e.
prove that K totally bounded and closed implies compact. Hint: First
show that any open cover E = {Eα}α∈A of a totally bounded set in a
metric space has a countable subcover, {Eαi }∞i=1 . Now assume K is
totally bounded and closed but there is a open cover with no finite
subcover. Use the fact there is a countable subcover to construct a
sequence {xi}

∞
i=1 ⊂ K such that xj 6∈ ∪ji=1Eαi for all j. Now use the

total boundedness and closure to get that there is an x∗ ∈ K such that
a subsequence of {xi}∞i=1 converges to x∗. Find a contradiction.

Definition 7.4.7 (Sequentially Compact). A set K is sequentially compact
if every sequence contained by K has a convergent subsequence converging to
a point in K.

Theorem 7.4.4 (Compact ⇔ Sequentially Compact, (in metric spaces)).
A set K, in a metric space X, is closed and totally bounded if and only if it is
sequentially compact.

Exercise 7.4.7. Prove Theorem (7.4.4). Hint: the only if part can be
proven using the results above. The if part can be shown by assuming
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that it is not true, that it is sequentially compact, but that there is some
ε > 0 for which there is no finite ε-net and this allows us to pick a
sequence in K with no convergent subsequence.

7.4.1 Max, Min and Uniform Continuity

Theorem 7.4.5. If f : X→ Y is continuous and K ⊂ X is compact, then f(K)
is also compact.

Theorem 7.4.6 (Max’s and Min’s on Compact Sets). If a function f :

X→ R is continuous on a compact set K, then there exists x∗, x∗ ∈ K such
that f(x∗) = inf(f(K)) and f(x∗) = sup(f(K)).

Theorem 7.4.7 (Compactness gives Uniform Continuity). If a function
f : X → R is continuous on a compact set K, then a δ(x, ε) (from Defini-
tion 7.3.8) can be found that does not depend on x. I.e. the size of the δ-balls
is uniform in x.

7.5 Connectedness

Definition 7.5.1 (Connectedness). A set D ⊂ X is connected if:

(1) O1 and O2 open, , (2) O1 ∩O2 = ∅, and (3) D ⊂ O1 ∪O2

implies
O1 ∩D = ∅ or O2 ∩D = ∅.

Putting it succinctly, if we intersect a connected subset with two disjoint
open sets, one of the intersections must be empty. We say that D cannot be
separated by two disjoint open sets.

Theorem 7.5.1 (Continuity Preserves Connectedness). If f : X → Y is
continuous and D ⊂ X is connected, then f(D) is connected in Y.

Exercise 7.5.1. Prove Theorem (7.5.1). Hint: suppose f(D) is not con-
nected and use two disjoint open sets to separate f(D).
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7.6 Liminf and Limsup

Definition 7.6.1 (lim sup, lim inf for Sequences in R). Suppose that
{xi}
∞
i=1 ⊂ R. We define:

lim sup
i→∞

xi ≡ lim
m→∞

sup({xi}∞i=m) and

lim inf
i→∞

xi ≡ lim
m→∞

inf({xi}∞i=m).

Definition 7.6.2 (limsup, liminf for Functions). Suppose that f : X→ R.
Then

lim sup
x→x∗

f ≡ lim
r→0

(
sup

x∈B(x∗,r)
f(x)

)
and

lim inf
x→x∗

f ≡ lim
r→0

(
inf

x∈B(x∗,r)
f(x)

)
.

Remark 7.6.1. Note that some analysts prefer the definition that ignores
the value of the function at x∗. Thus, in the definition above, instead of
x ∈ B(x∗, r) they use x ∈ B(x∗, r) \ {x∗}.

Exercise 7.6.1. Prove that lim supx→x∗ f = lim infx→x∗ f = f(x∗) for all
x∗ ∈ X if and only if f : X→ R is continuous.

7.6.1 Upper Semi-continuity and Lower Semi-continuity

Definition 7.6.3 (Upper and Lower Semi-continuity). Suppose f :

X→ R.

If lim supx→x∗ f 6 f(x∗), we say that f is upper semi-continuous at x∗. If
this is true at every x∗ ∈ X, then we simply say that f is upper semicontinuous
on X.

If lim infx→x∗ f > f(x∗), we say that f is lower semi-continuous at x∗. If this
is true at every x∗ ∈ X, then we simply say that f is lower semicontinuous on
X.
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Figure 21: Upper and lower envelopes as x∗ is approached, illustrating
how, for continuous functions, the envelopes pinch together at the
limit.

Figure 22: Semicontinuity illustrations.
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7.7 Examples of Metric Spaces + Many More Exercises

7.7.1 Thinking about R2 as a Metric Space

Note: I often use 0 to denote the origin in Rn as well as the number
0 ∈ R.

If we define |x| ≡
√
x · x =

√
x21 + x

2
2 we can verify that ρ(x,y) ≡ |x− y|

satisfies:

1 |x− y| > 0 and |x− y| = 0⇒ x = y

2 |x− y| = |y− x|

3 |x− z| 6 |x− y|+ |y− z|

Figure 23: The Triangle Inequality.

Exercise 7.7.1. Show that x · y 6 |x| |y| for all x,y ∈ R2. Hint: assume
|x| = |y| = 1 and compute |x− y|.
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Exercise 7.7.2. Show that ρ(x,y) ≡ |x− y| satisfies the triangle inequal-
ity/ Hint: Defining u = x− y and v = y− z, note that we are trying to
prove that |u+ v| 6 |u|+ |v|. Now recall that |u| =

√
u · u.

We get that (ρ(x,y) = |x− y|, R2) is a metric space.

Exercise 7.7.3. Show that any open ball in (|x− y|, R2) is actually an
open set. This takes a little bit of work and the triangle inequality. See
Figure (19).

Exercise 7.7.4. Show that the closed unit ball B̄(0, 1) ⊂ R2 is not open
by finding a point x ∈ B̄(0, 1) such that B(x, r) 6⊂ B̄(0, 1) for all r > 0.

Definition 7.7.1 (Interior, Exterior). The interior of a set are all the points
in x ∈ E such that, for some r > 0, B(x, r) ⊂ E. The exterior of E is the set of
interior points of Ec. We denote the interior by int(E) or Eo. We denote the
exterior of E by ext(E) or (Ec)0.

Definition 7.7.2 (Topological Boundary). The boundary of a set E is
the set of points x ∈ R2 such that for every r > 0, B(x, r) ∩ E 6= ∅ and
B(x, r) ∩ Ec 6= ∅. In other words, x is neither an interior point of E nor an
exterior point of E. We denote the boundary of E by ∂E.

Exercise 7.7.5. Find all the boundary points in B̄(0, 1) ⊂ R2.

Exercise 7.7.6. Define Q to be all the points in R2 with rational coor-
dinates. Find (1) the interior points, (2) the exterior points, and (3) the
boundary points of Q.

Exercise 7.7.7. Define D to be the closed unit ball in R2, centered at
the origin 0, with the origin removed: D = B̄(0, 1) \ {(0, 0)}. Find an
infinite open cover of D that has no finite subcover.

Exercise 7.7.8. Show that the intersection of an arbitrary family of
closed sets in a metric space is closed.
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Figure 24: Illustration of interior, boundary and exterior.
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Definition 7.7.3 (Closure). The closure of a set E is the intersection of all
the closed sets containing E and is denoted clos(E).

Exercise 7.7.9. Find a set E ⊂ R2 such that the ∂E = clos(E), but
∂ clos(E) = ∅.

7.7.2 Path Length Spaces: R2

We will define the space X = R2 and choose a bounded function
g : X → [ε,C] where 0 < ε < C. First recall that a Lipschitz function
f : Rk → Rm is one for which |f(x) − f(y)| 6 K|x− y| for all x and y and
some (fixed) K <∞. Now define a path to be any image of a Lipschitz
function γ : [0, 1]→ X. Then the length of the path γ from γ(0) to γ(1)
is defined to be:

lg(γ) ≡
∫1
0

g(γ(t))|γ̇(t)|dt

Define
Γ(x,y) = {γ : [0, 1]→ X | γ(0) = x and γ(1) = y}.

Now we define a distance on X by:

ρg(x,y) = inf
γ∈Γ(x,y)

(lg(γ)) = inf
γ∈Γ(x,y)

∫1
0

g(γ(t))|γ̇(t)|dt

Exercise 7.7.10. Suppose g is constant on the regions shown in fig-
ure (26), taking the value 0 inside the disks and 1 outside the disks.
Find the shortest paths between the pairs of points shown. Hint: show
that if your path goes through one of the disks where g = 0, that the
path has to enter and exit the disks orthogonally, and that outside of
the disks, the paths are straight lines.

7.7.3 Path Length Spaces: Graphs

Suppose that G = (V ,E) is a graph embedded in Rn, with vertex
set V = {vj}

M
j=1 and the set of undirected edges E = {ei}

N
i=1. Define

117



just enough metric spaces

Figure 25: Path Length spaces with simple length kernels, g.
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Figure 26: Path-length exercise: See Exercise (7.7.10).
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li = |vj(i) − vk(i)|, the length of the ith edge connecting vj(i) and vk(i).
We define ρG(v,w) for v,w ∈ V to be the length of the minimal path
from v to w.

More details: if we can move from v to w along Γ , a sequence of
connecting edges, ei(1), ..., ei(J), where v is an endpoint of ei(1) and w
is an endpoint of ei(J), the length of Γ is defined to be lΓ ≡

∑J
k=1 li(k).

Define the set of all paths from v to w to be Γ(v,w). Now, define

ρG(v,w) = min
Γ∈Γ(v,w)

lΓ

Exercise 7.7.11. Show that (ρG,G) is a metric space.

Definition 7.7.4 (Degree of a Vertex, Maximal Degree). The degree of
a vertex is the number of edges that connect to that vertex. Maximal degree
for a graph is the largest degree that any vertex has in the graph.

Exercise 7.7.12. Find an algorithm for finding minimal paths on a
graph. What is the complexity in terms of maximal degree and the
number of points in the graph? Hint: Look up dynamic programming.

7.7.4 Normed Vector Spaces: Rn

Definition 7.7.5 (Euclidean Norm). Suppose that x ∈ Rn. Define

|x| =
√
x · x.

Exercise 7.7.13. Convince yourself that showing x · y 6 |x| |y| is as easy
in Rn as it is in R2. See Exercise 7.7.1.
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7.7.5 Normed Vector Spaces: Function Spaces

Definition 7.7.6 (Space of Continuous Functions, C([a, b])). We define
C([a,b]) to be the set of all continuous functions on the closed and bounded
interval [a,b]: f : [a,b] → R with the distance between any two functions
f,g given by

|f− g|sup ≡ max
x∈[a,b]

|f(x) − g(x)|

.

Exercise 7.7.14. Show that C([a,b]) is a metric space.

Figure 27: Illustration of C([a,b]).

Definition 7.7.7 (Space of Lipschitz Functions, Lip([a, b], K, B)). We
define Lip([a,b],K,B) to be the set of all Lipschitz continuous functions on
the closed and bounded interval [a,b]: f : [a,b]→ R, such that the Lipschitz
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constant for the function does not exceed K and |f(x)| < B for all x ∈ [a,b].
Let the distance between any two functions f,g again be given by

|f− g|sup ≡ max
x∈[a,b]

|f(x) − g(x)|

.

Exercise 7.7.15. (Challenge) Show that Lip([a,b],K,B) is totally bounded.

Definition 7.7.8 (Space of L2 Functions, L2([a, b])). We define L2([a,b])
to be the set of all functions on the interval [a,b]: f : [a,b] → R with the
distance between any two functions f,g given by

|f− g|2 ≡

√∫b
a

|f(x) − g(x)|2 dx

.

Exercise 7.7.16. (Challenge) Show that L2([a,b]) is a metric space.

7.8 Remarks about Topological Spaces

Metric spaces are an example of general topological spaces.

Definition 7.8.1 (Topological Space). A topological space is a set of points
X together with a collection of subsets, T, called open sets, satisfying:

1 ∅,X ∈ T.
2 Any arbitrary union of open sets is also open: another way of saying this is

that T is closed under arbitrary unions.
3 The intersection of any finite collection of open sets is also open: T is closed

under finite intersections.

The universe of topological spaces is an infinite, unimaginably wild
zoo of strange beasts. Almost all the spaces we will mention – and all
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the spaces we work with very much – will be metric spaces. And most
of those metric spaces will be normed vector spaces.

Exercise 7.8.1. Show that the following is a topological space, but not
a metric space. Let X = R and T = {all sets whose complement is a
finite number of points} ∪ {∅}.

7.9 Extra Problems

All of the following are extra credit and are designed to give you extra
experience in the exploration of metric spaces.

Exercise 7.9.1. Suppose that X = R2 and ρ(x,y) = |x−y|∞ ≡max{|x1−
y1|, |x2 − y2|}. Show that (ρ∞,X) is a metric space.

Exercise 7.9.2. Suppose that X = R2 and ρ(x,y) = |x− y|1 ≡
∑2
i=1 |xi−

yi|. Show that (ρ1,X) is a metric space.

Exercise 7.9.3. Sometimes the metric space in Exercise (7.9.2) is called
the taxicab metric. Why?

Exercise 7.9.4. We again focus on the metric space in Exercise (7.9.2).
Suppose that p = (0, 0) and q = (1, 1). Find the set of all paths of
minimal length from p to q.

Exercise 7.9.5. The discrete metric is the metric given by (1) ρ(x,y) = 1
if x 6= y and (2) ρ(x,y) = 0 if x = y. Suppose that X = R2 and ρ is the
discrete metric.

1 Describe in detail what open balls of radius .5, 1, 1.1, and 10 look like.
2 Which sets in X are open?
3 Which sets in X are closed?
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Exercise 7.9.6. Define the following metric on R2

ρ2T (x,y) ≡ |x− y|2 if |x− y|2 6 1
1 if |x− y|2 > 1

where | · |2 is the usual Euclidean norm on R2. Show that this “metric”
is indeed a metric – i.e. show that it satisfies the triangle inequality.
We call this the truncated Euclidean metric on R2.

Exercise 7.9.7. Important fact: Suppose Rn is given the usual Eu-
clidean metric. Show that a set E ⊂ Rn is compact if and only if it is
both closed and bounded.

Exercise 7.9.8. Let MT be R2 with the truncated Euclidean metric and
M2 be R2 with the usual Euclidean metric. Show:

1 The open sets in MT are open in M2 and the open sets in M2 are open
in MT .

2 Which sets are compact in M2 and which sets are compact in MT?
Does this conflict with Exercise (7.9.7?)

Exercise 7.9.9. Unions of closed sets:

1 Show that a finite union of closed sets is always closed.
2 Show by example that the union of a countably infinite family of

closed balls in R2 need not be closed.
3 Give an example of an infinite union of closed balls in R2 that is closed.
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8The Art of Inequalities

8.1 Why Inequalities?

The art of analysis is tightly bound up with the art of inequalities. In this
chapter we will explore inequalities, (hopefully) launching you on a
lifelong exploration of the endless riches they hold.

The reason for this importance of inequalities has to do with the wider
set of questions we ask when we move to more advanced mathematics.

In elementary mathematics – Algebra, calculus beginning linear alge-
bra and differential equations – the focus is often on solving equations,
for example:

Solving Ax = b : Find x ∈ Rn that satisfies Ax = b, where A is an n
by n real matrix and b ∈ Rn.

Computing df
dx : Finding the derivative of f.

Computing
∫b

a f(x) dx: computing the definite integral of f – the area
underneath the curve from a to b.

Solving d2f
dt2 + a df

dt + bf = 0: Finding a function of time, f : t ∈ R→ R

which satisfies f̈+ aḟ+ bf = 0, f(0) = f0 and ḟ(0) = d0.

In each of these cases, we are looking for the solution, though, in the
Ax = b case, we might have a nontrivial null space in which case there
will be an entire affine subspace of solutions.

When we move beyond the relatively elementary questions, there are
questions added to the exploration, making inequalities both necessary
and natural. Here are important examples of those questions. In these
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examples, we will be considering metric spaces which are vector
spaces, with a metric d given by the vector space norm | · |,

d(x,y) = |x− y|.

Continuity : One version of continuity of mappings is that a map-
ping f : X→ Y is continuous at x∗, if for any ε > 0, there is a δ(ε) > 0
so that:

|x− x∗| < δ(ε)⇒ |f(x) − f(x∗)| < ε

Equivalently, there is a δ(ε) > 0 so that

f (B(x∗, δ(ε))) ⊂ B(f(x∗), ε)

for all ε > 0. This arises repeatedly – proving something is continuous
is often an important part of inferring some property you want to
infer.

Approximation and Convergence : Here is an example. Sup-
pose that the equation Ax = b is given to us, but that the b is only
known to some tolerance ε. That is, the true b̂ is only known to be
a distance at most ε from the given b: b̂ ∈ B(b, ε) or equivalently,
|b− b̂| < ε. Then, as we will see in the next chapter on linear maps, if
A is invertible, the set of possible solutions will be a solid ellipsoid,
centered on A−1(b), whose longest axis is ε

σn(A) where σn(A) is the
smallest singular value of A. Such an ellipsoid can be expressed as

{x : xtBx 6 c}

for some positive definite symmetric matrix B. Another example
comes from statistical learning theory (SLT) where we often encounter
something like this:
Theorem 8.1.1 (Caricature of SLT type result). Suppose that
1 X ≡ {xi}

N
i=1 are independent samples from some (often unknown) probabil-

ity distribution in Rn,
2 we are given a function that has some sort of regularity condition (for

example, f is Lipschitz with Lipschitz constant k),
3 we know the values of f on X,
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4 and that we have constructed an empirical estimator of f, f̄N based on those
samples and values.

Then, the probability P of finding points where the estimator is off by more
than ε goes to 0 as N→∞ because something like:

P{y : |f(y) − f̄N(y)| > ε} < pl(N, ε)e−g(N,ε)

is true for a fixed polynomial pl(N, ε) and function g(N, ε) such that

g(N, ε) →
N→∞

+∞

for any fixed ε.
Thus, inequalities allow us to make the level of uncertainty in approxi-
mation error precise. Yet another example are the kinds of statements
you can prove about convergence of discrete approximations to defi-
nite integrals. Suppose that f : [a,b] ⊂ R → R is continuous. Define
∆y = b−a

N∣∣∣∣∣
∫b
a

f(y) dy−

N−1∑
i=0

f(i∆y+ a)∆y

∣∣∣∣∣ < Cf(b− a)∆y = Cf
(b− a)2

N
→

N→∞
0

where Cf is a fixed constant that depends on f but not on N.
Convergence to 0: Often we would like to prove that some set is
small. Perhaps this is the set of points where a function is discontinu-
ous or otherwise badly behaved. Very often we are trying to prove that
the measure of such a set is zero by proving a sequence of statements
like this:

µ(E) 6 h(εi)

where E is the set in question, µ(E) is the measure of E, h(x) is a positive
function converging to 0 as x→ 0, and εi > 0, with εi →

i→∞
0. (The work

required to prove the inequalities can sometimes be considerable.)

Very generally, showing that a discrete approximation GN converges
to some true G (G can be a set or function or measure) aims at proving
statements like

ρ(G,GN) →
N→∞

0
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for some appropriate metric ρ, or equivalently, there is a function
H : N→ R such that

ρ(G,GN) < H(N) →
N→∞

0.

So we accomplish our result by proving a sequence of inequalities.
Boundedness : Sometimes everything we want to know about a
function or mapping f follows from knowing

sup
x∈X

|f(x)| < C <∞

for some norm | · | and constant C. Or we might know that E ⊂ Rn is
closed and proving that E is bounded:

sup
x∈E

|x| < C <∞

is all we need to show to get that E is compact, after which we
can conclude a sequence of convenient properties about continuous
functions on E. Or perhaps we have a set of functions F and we want
to know that

sup
f∈F

|f| < C <∞

where | · | is a norm on the space of functions.
Constraints and Subset Definition : Very often, in the case
in which we are given a function F : X→ R that we want to maximize
or minimize (i.e. we want to optimize), we are only interested in a
subset of X, called the feasible set E. Very often this set is defined by
an inequality or collection of inequalities:

E ≡ {x ∈ X : g(x) 6 c}

or
E ≡ {x ∈ X : gi(x) 6 ci for i = 1, ...,N}.

In the case of the classic linear programming case, the g and gi are
linear functions of x ∈ Rn.
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Inclusion in Subsets : Showing a function is in some space or
subset of a space is often equivalent to showing the function or derived
property of the function satisfies some inequality. For example, the
Banach fixed point theorem (see Remark 8.1.1), stating:
Theorem 8.1.2 (Banach fixed Point). If (1) f : B → B for some Banach
space B and (2) |f(x) − f(y)| 6 k|x − y| for all x,y ∈ B and some fixed
0 6 k < 1 (i.e. f is a contraction mapping), we can conclude that there exists
a unique x∗ ∈ X such that

f(x∗) = x∗.

can be used to solve various nonlinear problems. And to apply this
theorem, the work is often focused on showing that f belongs to the
family of contraction mappings, i.e. that

|f(x) − f(y)| 6 k|x− y|

for all x,y ∈ B and some fixed 0 6 k < 1.
Remark 8.1.1. Any complete, normed, vector space is called a Banach space.
For example Rn, for all n, is a Banach space when we use the usual Euclidean
norm |x| =

√
x · x (or actually, when we use any vector norm as the metric).

Embedding : This is a special version of “Inclusion”: here we want
to know in what cases one space of functions is actually completely
included in another space of functions. We remind ourselves of the
definition of Lp functions on a space E with measure µ,
Definition 8.1.1 (Lp spaces). A function f : E→ R is said to be in Lp(E)
if Lp(f) ≡

(∫
E |f|

p dx
) 1
p < ∞. Here we assume 1 6 p 6 ∞ and we get the

usable definition of L∞

L∞(f) = inf{a ∈ R | µ({x||f(x)| > a}) = 0}

by a limiting process.
Now an example of embedding. When the domain of the family of
functions is a compact subset K ⊂ Rn, we know that the family of Lp
functions on K, Lp(K), is also in the family of L1 functions on K, L1(K).
I.e. Lp(K) ⊂ L1(K). This inclusion follows immediately from Holder’s
inequality: ∫

E

|fg| dx 6 |f|p|g|q
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where 1 6 p,q 6∞ and 1
p + 1

q = 1. To see this, we define g = χE, the
function that is 1 on E and 0 everywhere else. Supposing that E = K is
compact and therefore has finite n-dimensional volume, the inequality
turns into: ∫

K

|fg| dx =

∫
K

|f| dx

= |f|1

6 |f|p|1|q

= Vol(K)|f|p

So
|f|p <∞⇒ |f|1 <∞

i.e.
Lp(K) ⊂ L1(K).

Uncertainty : The area of uncertainty quantification – figuring out
how errors in measurement of data effect inferences made from that
data – has always been important, but challenging to the point that
only after the advent of considerable computing power have many of
these questions become at least partly approachable. In general, we
measure data like initial temperatures and pressures and displacement
and then we run a simulation to figure out some future quantity.
Very often we are simulating some partial differential equation, so
the discrete approximation is a very high-dimensional problem. In
essence, we want to know how the uncertainty – we know our initial
point is in some (hopefully small) ε-ball in RN where N is quite large
– evolves under the influence of nonlinear mappings Fk. I.e. denoting
composition of G and H by G ◦H, what does

Fk ◦ Fk−1 ◦ · · · ◦ F1(B(x0, ε))

look like? In particular what is the smallest ∆ such that

Fk ◦ Fk−1 ◦ · · · ◦ F1(B(x0, ε)) ⊂ B(Fk ◦ Fk−1 ◦ · · · ◦ F1(x0),∆)?

Equivalently, what is the smallest ∆ such that

|x0 − x| < ε⇒ |Fk ◦ Fk−1 ◦ · · · ◦ F1(x0) − Fk ◦ Fk−1 ◦ · · · ◦ F1(x)| < ∆
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All of the above questions involve some metric or metric like measure
mapping the sets, functions or measures or pairs of the same, to the
real numbers. While it is the case that we compare things that are
not real numbers – for example we say that the function f is less than
the function g, f < g, if for all x ∈ Rn, f(x) < g(x) – when the objects
we are comparing are real numbers, a and b, we know that one of
three things is true: (1) a < b, (2) a = b, or (3) a > b. That is, the real
numbers are totally ordered.

As a result, mastery of inequalities begins with mastery of some simple
inequalities in R.

8.1.1 Beginning Facts

Suppose that a,b, c,d ∈ R. Then:

1 a < b and b < c ⇒ a < c

2 a < b ⇒ a+ c < b+ c

3 a < b and c > 0 ⇒ ac < bc.
4 a < b and c < 0 ⇒ ac > bc. In particular, a < b ⇒ −a > −b.
5 0 < a < b 0 < c < d ⇒ ac < bd.
6 In each of the above lines, replacing all the <’s and >’s with 6’s and

>’s generates statements that remain true.

Exercise 8.1.1. Prove that 0 < a < 1 ⇒ 1 > a > a2 > a3 > ....

Exercise 8.1.2. Prove that 0 < 1 < a ⇒ 1 < a < a2 < a3 < ....

Exercise 8.1.3. Prove that 0 < a < b ⇒ a2 < b2.

Exercise 8.1.4. Give an example showing that a < b 6⇒ a2 < b2.
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Exercise 8.1.5. Prove that 0 < a < b ⇒ 0 < 1
b <

1
a

Exercise 8.1.6. Suppose that a 6 b+ ε for all ε > 0. Prove that a 6 b.

Exercise 8.1.7. Suppose that a > b− ε for all ε > 0. Prove that a > b.

It is sometimes helpful to think about a particular inequality or col-
lection of inequalities as statements about subsets of R or conditions
defining a subset of the real numbers. Suppose that we know that
a < f(x) < b for all x ∈ R. This is equivalent to the statement that
f(R) ⊂ (a,b). In the case that a < f(x) < b is not true for all R,
a < f(x) < b can be seen as the definition of the set {x | a < f(x) < b}

While this is not always the best way to make sense of a particular
inequality, it can be helpful.

There are a few standard ways of proving simple inequalities:

Monotonicity g(x) < f(x)⇒
∫x
a g(s) ds <

∫x
a f(s) ds

Non -negativity (whatever)2 > 0 (as long as whatever is real, i.e.
not complex).

Splitting into P ieces The idea here is that something we want
to bound can be split into two or more pieces, each of which can be
bounded or controlled, usually by different means. The first subsection
of the next section demonstrates this using a simple proof of openness.

Leveraging S imple Use a simple fundamental inequality (like the
Cauchy-Schwarz inequality or Jensen’s inequality) to prove a trickier
inequality. We will discuss both of those inequalities in more detail
in the next section, but Cauchy-Schwarz (CS) is the one that says
x · y 6 |x| |y| and Jensen’s, in it’s simplest form, say that f(αx+ (1−

α)y) 6 αf(x) + (1−α)f(y) for all convex functions f. In fact it is usually
used as the definition of convex functions – a function is convex if it
satisfies Jensen’s inequality.

Special Cases Prove the inequality for special cases and then ex-
tend: for example, the standard way to prove the CS inequality first
assumes that |x| = |y| = 1.
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On the other hand, it is the art of inequalities and art is always a personal,
idiosyncratic practice. So you need to collect your own personal bag of
tricks through experience, by grappling with a variety of inequalities
in your own way. True mastery comes only through a very personal
immersion in inequalities.

We begin that process by looking at 10 inequalities.

8.2 A Beginning Repertoire

8.2.1 Triangle Inequality - Open Balls are Open Sets

The previous chapter introduced you to metrics and the triangle in-
equality. You also had an exercise that asked you to prove that open
balls are open. We prove that again here and then discuss the ideas.

We assume we are in a metric space M = (X, ρ). The triangle inequality
says that

ρ(x, z) 6 ρ(x,y) + ρ(y, z)

for any triple of points x,y, z ∈ X.

Task: Prove again that the open ball B(x, r) – {y : ρ(y, x) < r} – is indeed
an open set. I.e. prove that for every y ∈ B(x, r), there is an s > 0

such that B(y, s) ⊂ B(x, r). See Figure 28. This should be an almost
instantaneous proof for you by now, but the point of this is to look at
it again and notice how inequalities are everything (in this proof).

What we are wanting to prove is that for every point y in the open
ball B(x, r), there is a small enough positive number s, so that all the
points within a distance of s of y are also within a distance of r of x.
I.e there is a small enough s so that:

z ∈ B(y, s)⇒ z ∈ B(x, r)

or
ρ(z,y) < s⇒ ρ(z, x) < r
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or
B(y, s) ⊂ B(x, r)

What we have at our disposal – what we control is only one variable –
s. We do not have a way of knowing ρ(z, x) directly, but once we have
chosen y and s, we know ρ(y, x) and a bound for ρ(z,y).

At this point, we take advantage of the fact that the triangle inequality
gives us a bound on the distance of interest – ρ(z, x) – in terms of
things we know or have bounds for – ρ(x,y) and ρ(y, z).

ρ(z, x) 6 ρ(x,y) + ρ(y, z)

Having chosen y, we know that ρ(x,y) < r → ρ(x,y) = r− δ where
δ > 0. Since s is up to us, and can be chosen after we choose y, we
choose 0 < s(y) < δ/2. This leads immediately to:

ρ(z, x) 6 ρ(x,y) + ρ(y, z) < r− δ+ δ/2 = r− δ/2 < r

and this is true for every z ∈ B(y, s), we get that B(y, s) ⊂ B(x, r) which
is what we were trying to prove.

Reviewing, we took a distance we wanted to bound and split it up into
two distances we could control. That theme – splitting things we want
to know into two of more pieces, each of which is handled differently,
is an very common theme in analysis.

Exercise 8.2.1. Recall Definition (4.2.1) of the length of a curve γ
connecting x and y in R2. Show that the triangle inequality implies
that the length of any curve connecting two points is never less than
the distance between to the two points. Hint: Actually, the exercise
following the Definition already solves this problem. See Figure (29).
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Exercise 8.2.2. Suppose that we want to minimize the length of a curve
in R2 that connects x and y and intersects a vertical line L, exactly one
time. Show that the optimal curve is two line segments whose angles,
θ1 and θ2, as shown in Figure (30), are equal. Hint: keep x fixed and
reflect y and the piece of the curve connecting y to L about L to the
other side of L. Does this change the length of anything?

Exercise 8.2.3. (Challenge) Suppose now that the two points we
want to connect with a curve of minimal length are on opposite
sides of L, see Figure (31). Suppose that on the left side ρ(u,w) =

a
√

(u−w) · (u−w) and on the right side ρ(v, z) = b
√
(v− z) · (v− z),

where a > 0 and b > 0 and a 6= b.

1 Given x, y and L, find the relationship between θ1 and θ2.
2 Use this to derive an equation of the form

c1
p2

= c2 +
c3

(h− p)2

for the position of the point where the shortest path crosses L. Here
h = |x2 − y2| is the vertical separation between x and y and 0 6 p 6 h
is the vertical distance of the crossing point from the height of x.

8.2.2 Cauchy-Schwarz Inequality - |x|2 is a Metric

The Cauchy-Schwarz inequality* states that in any normed space
X with an inner-product (i.e. a Hilbert space, providing it is also
complete) we have:

x · y 6 |x| |y|.

One proof uses a special case to prove the general case.

First we suppose that |x| = |y| = 1. We also use non-negativity of the
norm. |w| > 0 for all w ∈ X. The rest is easy:

*While it is true that by now, you are intimately acquainted with this inequality,
the Cauchy-Schwarz inequality belongs in every list of 10 initial inequalities!
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Figure 28: The open ball is open!

Figure 29: Discrete approximations to the length of a curve. The
supremum of such lengths is defined to be the length of the curve.
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Figure 30: Finding the angle of a reflection – proving that it is in fact
the shortest length between two points if you assume it bounces off
the surface.
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Figure 31: Showing that different metrics on either side leads to bent
shortest paths – just like the phenomena of refraction!
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|x− y|2 > 0⇒ (x− y) · (x− y) = x · x+ y · y− 2x · y > 0

from which we conclude that

2 > 2x · y

or
x · y 6 1.

In the general case (assuming that neither x nor y is 0, in which case
the result is immediate,) when x and y do not both have norm 1, we
apply the result to u = x

|x| and w = y
|y| to get

u ·w 6 1⇒ x

|x|
· y
|y|

6 1

implying the desired result.

Reviewing, we used both a special case and non-negativity to get the
desired result.

Exercise 8.2.4. Use the Cauchy-Schwarz inequality to prove the trian-
gle inequality for the Euclidean distance in Rn. Hint: Use this form
of the triangle inequality in normed spaces: |x+ y| 6 |x|+ |y| and start
by convincing the reader of your proof that this is indeed the triangle
inequality in normed spaces, i.e. in spaces where ρ(u, v) = |u− v| for
some norm | · |.

Exercise 8.2.5. Recall from Exercise (4.3.1) that the rotation matrix Rθ
rotates vectors in R2 by θ. Show that x · y = xtRTθRθy and use this fact
to show that for x,y ∈ R2, x · y = cos(θ)|x| |y|.

Exercise 8.2.6. Prove that the distance, on the unit sphere in R3, de-
fined by ρ(x,y) = arccos(x · y), satisfies the triangle inequality for
x,y ∈ ∂B(0, 1) ⊂ R3. Hint: Sketch what this distance is, geometrically
on the unit sphere. Recall that arccos takes inputs in [−1, 1] and spits
out θ ∈ [0,π].
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8.2.3 Jensen’s Inequality - AM-GM Inequality

A convex function is any function f : X → R mapping X to R that
satisfies Jensen’s inequality:

Definition 8.2.1 (Convex Function). A function f : X → R is a convex
function if

f(αx+ (1−α)y) 6 αf(x) + (1−α)f(y)

for all x,y ∈ X and all α ∈ [0, 1]

Remark 8.2.1. Note that the domain of a convex function need only be a
vector space. We will usually be working in Rn and from this point on in
the subsection, we will be working with functions whose domains are Rn or
subsets of Rn for some n.

Definition 8.2.2 (Convex Set). A set E is convex if, for any two points
x,y ∈ E and all α ∈ [0, 1], αx+ (1−α)y ∈ E.

The theory of convex functions and convex sets is both very useful
and interesting. We will explore a bit of this in the exercises now.

We will need a couple of definitions.

Definition 8.2.3 (Epigraph). The epigraph of a function f : Rn → R is the
set

epi(f) ≡ {(x,y) ∈ Rn ×R : f(x) 6 y}

Exercise 8.2.7. Prove that f : Rn → R is convex if and only if the
epi(f) ⊂ Rn+1 is convex.

Exercise 8.2.8. Prove that if f : Rn → R is convex, then

f(

N∑
i

αixi) 6
N∑
i

αif(xi)

for all α ∈ RN such that αi > 0 for all i and
∑
i αi = 1.
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Exercise 8.2.9. (Challenge) Suppose that f : R → R is convex, φ :

Rn → R is continuous, φ(x) > 0 for all x ∈ Rn, φ = 0 for |x| > R for
some R <∞, and

∫
Rn φ(x)dx = 1. Show that

f(

∫
Rn
xφ(x) dx) 6

∫
Rn
f(x)φ(x) dx

. Hint use approximation – you can discretize the integral and use
Exercise (8.2.8) to get an approximate result. Careful work in this
direction gets you the result.

Definition 8.2.4 (Concave Function). A function f : X→ R is a concave
function if

f(αx+ (1−α)y) > αf(x) + (1−α)f(y)

for all x,y ∈ X and all α ∈ [0, 1]

Exercise 8.2.10. (AM-GM Inequality) Use the fact that log : R→ R is
a concave function to get that

N∑
i

αixi = α1x1 +α2x2... +αNxN > xα11 x
α2
2 · · · x

αN
N = ΠNi αix

αi
i

for any {xi}
N
i=1 ⊂ R and all α ∈ RN such that αi > 0 for i = 1, ...,N and∑

i αi = 1.

Remark 8.2.2. “AM-GM” stands for “Arithmetic Mean - Geometric Mean”.
The (generalized) arithmetic mean of {xi}Ni=1 ⊂ R is

∑N
i αixi and the (gen-

eralized) geometric mean is ΠNi x
αi
i . They are generalized because all we

require is that
∑N
i=1 αi = 1 and αi > 0 ∀i, whereas the usual arithmetic and

geometric means result when αi = 1
N for all i.

8.2.4 1+ x 6 ex - learning bounds

Plotting the functions y = f(x) = 1+ x and y = g(x) = ex makes it clear
that f(x) 6 g(x) for all x ∈ R. To prove this analytically, we make use
of the following fact:
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Theorem 8.2.1. Suppose that h1(x0) 6 h2(x0) and dh1(x)
dx 6 dh2(x)

dx for
all x0 6 x and dh1(x)

dx > dh2(x)
dx for all x 6 x0. Then h1(x) 6 h2(x) for all

x ∈ R.

Exercise 8.2.11. Prove Theorem (8.2.1). Hint: use monotonicity both
for x > x0 and x 6 x0.

Exercise 8.2.12. Use Theorem (8.2.1) to prove that

1+ x 6 ex ∀x ∈ R.

See Figure (32).

Exercise 8.2.13. Show that for x ∈ (−∞, 0.5) we have:

1+ x 6 ex 6 1+ x+ x2.

Hint: split the argument into two pieces – one for x ∈ (−∞, 0) and one
for x ∈ [0, 0.5]. Now reason carefully with inequalities involving the
derivatives.

Exercise 8.2.14. Now conclude that for |x| < 0.5 (actually |x| < ln(2)
also works), we have:

|ex − (1+ x)| 6 x2

1 6
ex

1+ x
6 1+

x2

1+ x

1 6
enx

(1+ x)n
6

(
1+

x2

1+ x

)n
.

Learning a set from samples: Suppose now that we want to recover a
set E based on samples of that set.

1 Assume that N is the number of samples and we have divided the set
up into m equal probability pieces. That is, we have used the uniform
distribution to cut E into m equal size pieces. The idea now is that we
want to know what happens as N and m increase. We will assume
that both k ≡ N

m →∞ and m→∞.
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Figure 32: Picturing 1+ x 6 ex.

2 Notice that the probability of one particular piece never generating a
sample is (

1−
1

m

)N
=

(
1−

1

m

)mk
6
(
e−

1
m

)mk
= e−k

3 if we union over all of the pieces – we get a union bound saying:

Prob({missing at least one of the m pieces}) 6 me−k

4 Because we can choose any k we want (we can choose how m and N
increase!), we choose k = m. Put differently, we can sample the set m2

times when there are m pieces.
5 This leads to the statement that

Prob({missing at least one of the m pieces}) 6 me−m

→
m→∞

0
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Exercise 8.2.15. Supposing it is possible to divide up the set E into
m equal probability pieces such that the diameter of every piece is
bounded by δ > 0. Prove that the balls B(xi, δ), centered on the samples
{xi}

N
i=1, will cover the original set with probability at least 1−me−m.

See Figure (33).

Exercise 8.2.16. (Exploration) Suppose that E ⊂ R2 is connected, and
that the area of E, A(E), is 1 – A(E) = 1.

Sort of Optimal? Find an example of a set in E ⊂ R2, that we
can divide into 10, 000 pieces, each with as area of 1

10,000 and each

contained in a ball of radius
√
2

200 . Hint: try nice, easy-to-divide-up sets
in R2.

Optimal Suppose now that your set E is the union of 10, 000 closed
balls that intersect only on their boundaries, each of radius 1

100
√
π

.
Show that the obvious partition into 10, 000 pieces of equal area is an
optimally small cover ... i.e., for any connected set of area 1 that you
cut into 10, 000 pieces of equal area, you cannot get a cover with 10, 000
covering sets, the maximal diameter of which is smaller than 2

100
√
π

.
Hint: You will need the fact (called the isodiametric inequality) that, of
all sets with some fixed diameter D, none can contain more volume
(in our case, 2-dimensional area) than a ball with diameter D.

Low Densities Suppose now that if x ∈ E, then A(B(x,r)∩E
πr2

< 1
100 for

all r > δ. Show that if m = 10, 000 and δ = 1
101
√
π

, then the smallest
diameter of a cover made up if 10, 000 balls, is at least 1

10
√
π

.

8.2.5 Isoperimetric Inequality - Concentration of Measure in High
Dimensions

You have perhaps heard of the classical isoperimetric ratio – the small-
est perimeter of a region in the plane with a fixed area A is the
perimeter of a circle that has area equal to A: I.e. if a E ⊂ R2 has
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Figure 33: Reconstructions from Samples: If we sample N points from
a partition with m elements, N >> m, the probability of getting a cell
with no samples in it is very small. If the diameter of the partition
elements is bounded by δ, then the balls of radius δ centered on
samples cover the original set with high probability.
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area A, the smallest it’s perimeter can be is Pmin(A) = 2π
√
A
π = 2

√
πA.

Stating this as an inequality:

P2(A)

A
> 4π

This is true in great generality, but for our purposes we will just use
its generalization to Rn and to sets on the unit sphere in Rn:

Though we will introduce it in careful detail later, you have already
seen Hausdorff measure in Section (4.2.5) in the special case of the
dimension being 1. We have also referred to higher dimensional
versions Hk. In general, the k-dimensional measure of a set E ⊂ Rn,
k 6 n is Hk(E). It is a theorem that for E ⊂ Rn, Hn(E) = Ln(E) = usual
volume in n-dimensions. (Part of the proof of this theorem is quite
challenging.)

Suppose that Bn(r) ≡ B(0, r) ⊂ Rn. Define αn ≡ Hn(Bn(1)). It follows
that Hn(Bn(r)) = αnrn.

Exercise 8.2.17. By thinking about how the volumes of cubes change
when you scale them from a side length of 1 to a side length of r,
convince yourself that αn ≡ Hn(Bn(1)) implies that Hn(Bn(r)) = αnrn.
Hint: think of using tiny cubes to tile the ball.

Now we compute to get the n− 1 dimensional volume of the unit
sphere:

Pn(r)|r=1 ≡ Hn−1(∂Bn(r))
∣∣
r=1

=
dHn(Bn(r))

dr

∣∣∣∣
r=1

(See Exercise 8.2.19)

= nαnr
n−1

∣∣
r=1

= nαn

It follows that for a ball of radius r in Rn, the perimeter Pn(r) =

nαnr
n−1.
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We can state the two generalizations. We define Sn−1 ≡ ∂Bn(1)

Isoperimetric Inequality in Rn

(
Hn−1(∂E

)
)
n
n−1

Hn(E)
>

(
Hn−1(∂Bn(r))

) n
n−1

Hn(Bn(r))
(4)

=
(nαn)

n
n−1

αn
(5)

= (nnαn)
1
n−1 (6)

Isoperimetric Inequality on Sn−1 For this inequality, we need
to define Balls on the unit sphere Sn−1.

Step 1 Choose x ∈ Sn−1. By BS(x, r) ⊂ Sn−1 we mean all the points
y ∈ Sn−1 such that the shortest path from x to y in Sn−1 is less than r
in length.

Step 2 Because Hn−1(BS(x, 2r)) 6= 2n−1Hn−1(BS(x, r)) the result we
get is similar, but not identical, since the optimal ratio is not indepen-
dent of the radius of the ball.

Result So, the best we can do is this: Suppose that E ⊂ Sn−1 and
BS(x, r) ⊂ Sn−1. Then

Hn−1(E) = Hn−1(BS(x, r)) (7)

implies (8)

Hn−2(∂E) > Hn−2(∂BS(x, r)) (9)

where, of course, the boundaries ∂E and ∂BS(x, r) are the boundaries
in Sn−1.

Exercise 8.2.18. Define the distance from a point x to a set E ⊂ Rn, to
be

d(x,E) ≡ inf
y∈E

|x− y|.

Prove that if E is closed, there there is a point y∗ ∈ E such that
|x− y∗| = d(x,E), implying that the infimum is actually a minimum.
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Figure 34: The isoperimetric inequality in Rn.
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Figure 35: The isoperimetric inequality in Sn−1 ⊂ Rn.
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Exercise 8.2.19. Convince yourself, by playing around with sets in the
plane, that if

Es ≡ {x ∈ R2 : d(x,E) 6 s}

then dH2(Es)
ds

∣∣∣
s=r

= H1(∂Er) and in particular that dH2(Es)
ds

∣∣∣
s=0

=

H1(∂E). After convincing yourself, write up why you are convinced,
in a proof – this can be done geometrically.

Exercise 8.2.20. (Challenge) Assume this is true in higher dimensions
and on the sphere – i.e. that

dHk(Es)

ds

∣∣∣∣
s=r

= Hk−1(∂Er)

for sets E ⊂ Rk and E ⊂ Sk. Now suppose that E ⊂ Sk and Hk(E) =

Hk(BS(0, r)) where 0 is some fixed point in Sk. Use the isoperimetric
inequality on the sphere, Equations (7-9), Theorem (8.2.1) and great
care(!) to show that Hk(Es) > Hk(BS(0, r+ s)) for all s.

Now we will use the results of the exercises to get a very interesting
result on high dimensional spheres. First we note that for any fixed
ε > 0:

Hn(B(0, 1− ε))
Hn(B(0, 1))

= (1− ε)n 6 e−εn →
n→∞

0.

The geometric interpretation of this is that the outer ε-thick shell/layer
of the ball contains basically all the volume of the ball as the dimension
gets really large.

We can use this to show that the ε-neighborhood of any great circle on
the unit sphere contains almost all the surface area of the sphere. This
is the basic insight, exploited in high dimensional settings in all sort
of useful ways and is the fundamental concentration of measure result.

The idea is shown in Figures (36-37).

We start by observing that we can “bulge up” a horizontal n-1 dimen-
sional ball (disk) in Rn to get the upper hemisphere of Sn−1 ⊂ Rn.

150



8.2 a beginning repertoire

We know that the s corresponding to the ε (see the figures!) satisfies
1− ε = cos(s). Using the inequality from Exercise (8.2.21), we get that

(1− ε)n−1 6 e−
s2

2 (n−1) (10)

Now we can make the statement we were aiming for:

Theorem 8.2.2 (Concentration of Measure on Sn−1). Suppose that Es is
the s-neighborhood of some great circle C on Sn−1 and µSn−1 is the uniform
probability measure on Sn−1. Then:

µSn−1(Es) > 1− e
− s2

2 (n−1)

Proof. We use the idea in Figures (36-37).

1 Observe that the fraction of the sphere contained in the s-neighborhood
of F is the same as the fraction of the upper hemisphere contained in
the s-neighborhood of F: 1− C

C+D .
2 Geometrically, it is clear that 1− C

C+D > 1− B
A+B = 1− (1− ε)n−1

3 Using Equation (10) we have that

4 1− (1− ε)n−1 > 1− e−
s2

2 (n−1).

Exercise 8.2.21. Show that for 0 6 u 6 π
2 , cos(u) 6 e−

u2

2 . Hint: write
out the series for each remove the first two that are the same in each
and show that, by collecting subsequent pairs, each pair of terms in

the series for e−
u2

2 is bigger than the corresponding pair of terms in
the series for cos(u).
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Exercise 8.2.22. Use Theorem (8.2.2) to show that as the dimension
gets very large, the probability that two randomly chosen unit vectors
are almost orthogonal is close to 1. What does s getting small in
the Theorem mean, geometrically? Hint: choose the first unit vector
randomly and then focus your attention on the great circle defined
by that vector (there is only one this vector defines uniquely!). Now
choose the second vector randomly. By choosing randomly, I mean
according to the uniform probability measure on the sphere.

Figure 36: Concentration of measure, illustration 1: the s-
neighborhood of a great circle.
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Figure 37: Concentration of measure, illustration 2: aids to under-
standing the proof of Theorem (8.2.2).
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8.2.6 Chebyshev Inequality - Concentration type bounds

We begin with Markov’s inequality:

Theorem 8.2.3 (Markov Inequality). Suppose that
∫

Rn |f(y)| dµ(y) <∞
and t > 0. Then we can conclude that

µ({x : |f| > t}) 6

∫
Rn |f|dµ

t
.

the special case in which µ is a probability measure – µ(Rn) = 1 – is worth
pointing out, using the language of probability theory:

Prob{x : |f| > t} 6
E(|f|)

t

Proof. The proof is very simple. See Figure (38).

1 Notice that on {x : |f| dµ > t}, which mean that, well, |f| > t which in
turn implies ∫

{x : |f|>t}
|f| dµ > tµ({x : |f| > t}).

2 And of course ∫
Rn

|f| dµ >
∫
{x : |f|>t}

|f|.

3 So we get that tµ({x : |f| > t}) 6
∫

Rn |f|dµ which rearranges into our
result.

4 The probability result is exactly the same statement, because Expecta-
tions are just integrals and measures are probabilities.

Recall that for a probability measure ρ on Rn, we define the mean to
be

µ ≡ E(x) =

∫
Rn
x dρ
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and the variance to be

σ2 =

∫
Rn

|x− µ|2 dρ.

Theorem 8.2.4 (Chebyshev Inequality). Suppose that the probability mea-
sure ρ has finite mean µ and variance σ2. Then

ρ({x : |x− µ| > kσ}) 6
1

k2

Proof. This is an immediate application of Markov’s inequality after
you note that

{x : |x− µ| > kσ} = {x : |x− µ|2 > k2σ2}.

Exercise 8.2.23. (Markov Inequality Tests) For each of the follow-
ing functions that map R to R, compute the bounds given by the
Markov inequality on sizes of the superlevel sets and then compute
the actual size of those sets and compare. Assume the usual mea-
sure 1-dimensional Lebesgue is the measure integrated against in the
integrals implied in the problem statement.

1 f(x) = 1 when x ∈ [−1, 1] and f(x) = 0 elsewhere.
2 f(x) = 1

x2
for |x| > 1 and f(x) = 1 when |x| 6 1.

3 f(x) = 1
x2

for |x| > 1 and f(x) = 1√
|x|

when |x| 6 1.

4 f(x) = e−|x|.

8.2.7 Hölder’s Inequality - L1 ⇒ Lp for bounded domains

Definition 8.2.5 (Conjugate Exponents). Real 1 6 p,q 6 ∞ are conju-
gate exponents or simply Conjugate if

1

p
+
1

q
= 1
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Figure 38: Geometric proof of Theorem (8.2.3).
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Lemma 8.2.1 (Young’s Inequality). Suppose that a,b ∈ R are non-
negative and p and q are conjugate. Then

ap

p
+
bq

q
> ab

Proof. Apply the AM-GM inequality – x
p + y

q > x
1
py

1
q – to the quantities

x = ap and y = bq.

Theorem 8.2.5 (Hölder’s Inequality). Suppose that f,g : Rn → R, p and
q are conjugate and both f ∈ Lp and g ∈ Lq, i.e. that

|f|p ≡
(∫

|f|pdµ

) 1
p

<∞ and |g|q ≡
(∫

|g|qdµ

) 1
q

<∞

Then ∫
|fg|dµ 6 |f|p|g|q

Remark 8.2.3 (p-norm). |f|p where 1 6 p 6 ∞ is called the p norm of
f. Note that in the case of p = ∞ we have to be careful. The result is
that |f|∞ is the essential supremum – the infimum of values U, such that
µ({x : f(x) > U}) = 0.

Proof. We use Young’s inequality and begin by assuming that |f|p =

|g|q = 1:

1 Observe that Young’s inequality gives us that |f(x)g(x)| 6 |f(x)|p

p +
|g(x)|q

q for all x ∈ Rn.
2 Now integrate the inequality to get:∫

|fg|dµ 6
1

p

∫
|f|pdµ+

1

q

∫
|g|qdµ

=
1

p
+
1

q

= 1(= |f|p|g|q)
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3 In the case in which at least one of |f|p or |g|q is not equal to one, we
apply the result we just obtained to v = f

|f|p
and u = g

|g|q
yielding:

1

|f|p|g|q

∫
|fg|dµ 6 1

which in turn is a rearrangement of the result we were aiming for.

Exercise 8.2.24. Use the AM-GM inequality to prove Schwarz’ inequal-
ity for functions.

Exercise 8.2.25. Notice that Young’s inequality only makes sense when
p,q < ∞. But Hölder’s inequality is true if one of p or q is infinity
and the other is 1. Show Hölder’s in the p = 1, q = ∞ case. To
simplify this exercise, consider |f|∞ to simply be the maximum value
that f attains in Rn. (Note: Reminder, as mentioned above, |f|∞ is
actually the essential supremum – the infimum of values U, such that
µ({x : f(x) > U}) = 0.)

Exercise 8.2.26. Suppose that for x ∈ Rn we define

|x|p ≡

(
n∑
i=1

|xi|
p

) 1
p

.

Show that if p and q are conjugate these discrete versions of the p and
q norms also satisfy the Hölder inequality.

Exercise 8.2.27. (Challenge) Show that for x ∈ Rn

|x|∞ ≡ max
16i6n

|xi| = lim
p→∞

|x|p.

Exercise 8.2.28. Draw the unit balls in R2 for each of these discrete
norms: (1) |x|1, (2) |x|2, (3) |x|∞.
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8.2.8 Little o, Big O, and Derivatives - the cone condition for derivatives

We will dive into derivatives in much more detail in a later chapter,
but we begin here by giving an alternate definition of derivative that
is much more powerful than the usual definition you usually see in
the first course in calculus, because it generalizes very easily. First we
recall the notion of “little o” (first seen in Chapter 7) and introduce
the notion of “big O”.

Definition 8.2.6 (Recalling little o, introducing big O). We say say
that g : h ∈ Rn → Rm is in “little o(h)” if

|g(h)|

|h|
→

|h|→0
0.

We say that g : h ∈ Rn → Rm is in “big O(h)” if for some δ > 0

|g(h)|

|h|
6 C <∞ for |h| < δ

Remark 8.2.4. Of course the | · | indicate whatever norm is being used on
Rn and Rm. And these definitions are exactly the same when g : X→ Y and
X and Y are any two normed vector spaces, even infinite dimensional spaces.
We will also write g ∈ o(h) to indicate that “g(h) is in little o(h)”.

Definition 8.2.7 (Linear Maps). Recall that a map from one vector space
to another, f : X → Y (for example the X and Y’s can be Rn n = 1, 2, ...) is
linear if

f(αx+βy) = αf(x) +βf(y) ∀x,y ∈ X and ∀ scalars α and β.

We now give the definition of a derivative in the simplest case: when
f : R→ R.

Definition 8.2.8 (Derivative). Suppose that f : R → R. We say that f is
differentiable at x if there is a linear map Ax : R→ R such that

f(x+ h) − f(x) −Ax(h) = g(h) and g ∈ o(h)
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If f is differentiable, we call Ax the derivative of f at x

Exercise 8.2.29. Prove that the only linear maps L : R→ R are maps
of this form y = L(x) = ax for some real a

Exercise 8.2.30. Show that the above definition of derivative is actually
the definition you learned in Calculus I, in disguise.

Exercise 8.2.31. Show that g ∈ o(h) if and only if, for any ε > 0, there
is a δ(ε) > 0 such that

|h| < δ(ε)⇒ |g(h)| < ε|h|

Exercise 8.2.32. Show that we can restate the definition of derivative
above as follows:

Definition 8.2.9 (Derivative Restated). Suppose that f : R→ R. We say
that f is differentiable at x and Ax is the derivative of f at x, if there is a linear
map Ax : R→ R such that for any ε > 0 there is a δ > 0 and

|f(x+ h) − f(x) −Ax(h)| < ε|h| whenever |h| < δ

See what you can say about the geometry of the derivative given this
result. (The next exercise makes that concrete!)

Exercise 8.2.33. Exploration: Think about the following challenge
enough to make it precise and then see if you can prove it. This
problem is explored very carefully, with more hints, in Exercise 11.3.4
in Chapter 11. The Challenge: Show that exercise (8.2.31) combined
with Definition (8.2.8) implies that the graph of f can be found in
narrower and narrower cones about the tangent line at x∗, as we
restrict ourselves to smaller and smaller neighborhoods of x. Hint:
look at the case of f(x) = x2 at the point x∗ = 0 and see Figure (39).
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Figure 39: Assistance for Exercise (8.2.33).
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8.2.9 1+ ε
2 −

ε2

8 <
√
1+ ε < 1+ ε

2 for 0 < ε

You will often see this inequality in its use as an approximation:
√
1+ ε ≈ 1+ ε

2

or perhaps √
1+ ε = 1+

ε

2
+ o(ε)

where “+ o(ε)” means that the correction term is “in little o of ε”.

Remark 8.2.5. The inequality we focus on in this example is rooted in the
approximation for small ε of

√
1+ ε ≈ 1+ ε

2 which is itself a restatement
of the fact that

√
1+ ε = 1+ ε

2 + o(ε) is equivalent to the statement that√
1+ ε is differentiable at ε = 0 with derivative there or 12 . So of course, every

differentiable function can be approximated with upper and lower bounds
being generated using the derivative in the form of the first two terms of the
Taylor series: f(x0) + f ′(x0)(x− x0).

Exercise 8.2.34. Compute the Taylor Series for
√
1+ ε around the point

ε = 0.

Exercise 8.2.35. Show that if we approximate
√
1+ δ ≈ 1+ δ

2 , then the
magnitude of the error in squares does not exceed δ2

4 , I.e. that:∣∣∣∣∣(√1+ δ)2 −
(
1+

δ

2

)2∣∣∣∣∣ 6 δ2

4
.

Exercise 8.2.36. We deal with δ > 0:

1 Show that for 0 6 δ 6 2, we actually have:

1+
δ

2
−
δ2

8
6
√
1+ δ 6 1+

δ

2
.

2 Show that this implies that
∣∣√1+ δ− (1+ δ

2

)∣∣ = {the error in assuming√
1+ δ ≈ 1+ δ

2 }, is at most δ
2

8 (as long as 0 6 δ 6 2).
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Note: this implies approximation is very good as long as 0 6 δ << 1.

Exercise 8.2.37. Now we want to deal with δ < 0.

1 Use the mean value theorem to prove that:

√
1+ δ− 1 =

1

2
√
1+ c

δ

for some c ∈ (δ, 0). Rearranged this says:

1+
1

2
√
1+ c

δ =
√
1+ δ.

2 Now prove that because δ < 0 we have that

1+
1√
1+ δ

δ

2
6
√
1+ δ.

3 Show that, in fact:

1+
1

1+ δ

δ

2
6 1+

1√
1+ δ

δ

2
6
√
1+ δ 6 1+

δ

2
.

4 Now use this last inequality to show that:∣∣∣∣√1+ δ−(1+ δ2
)∣∣∣∣ 6 1

2

δ2

1+ δ
.

5 Conclude that as long as −12 6 δ 6 0, we have∣∣∣∣√1+ δ−(1+ δ2
)∣∣∣∣ 6 δ2.

Exercise 8.2.38. Collect the results from the Exercises (8.2.35 - 8.2.37)
to conclude that if

|δ| 6
1

2
,

then the error in assuming
√
1+ δ ≈ 1+ δ

2 is at most δ2, i.e.∣∣∣∣√1+ δ−(1+ δ2
)∣∣∣∣ 6 δ2.
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Remark 8.2.6. Question: why is this approximation valuable? Answer:
because, very often, 1+ δ

2 is (algebraically) much easier to work with than√
1+ δ.

Exercise 8.2.39. One final exercise on the approximation of
√
1+ δ:

Use the Taylor series for
√
1+ δ with a second derivative error term to

conclude that for δ ∈ (−12 , 12):∣∣∣∣√1+ δ−(1+ δ2
)∣∣∣∣ 6 1

4
δ2.

Exercise 8.2.40. See if you can find inequality that approximates y =

f(x) = x5 near x = 1. I.e. approximate (1+ ε)5 for small ε and give
explicit bounds in the form of inequalities.

8.2.10 Gronwall’s Inequality –

In this subsection, we look at an example of Gronwall’s differential
inequality:

Theorem 8.2.6 (Gronwall). Suppose that x(t) > 0 is smooth, a > 0 and
x(t) satisfies

dx

dt
(t) 6 ax(t) ∀t ∈ [0, T ]. (11)

Then
x(t) 6 x(0)eat ∀ t ∈ [0, T ]. (12)

Proof. (Geometric) The basic idea is that the slope of the curves x(t)
must never exceed the slope of the solutions of the equation

dy

dt
(t) = ay(t) (13)

which means x(t) can only cross from above to below any curve y(t)
which is a solution curve of equation 13. That is the geometric proof
in a nutshell.

164



8.2 a beginning repertoire

In order to be a bit more careful, we introduce a perturbed version of
the inequality:

G(ε) :
dx

dt
(t) 6 (a+ ε)x(t) ∀t ∈ [0, T ] (14)

and a perturbed version of the equation:

GE(ε) :
dw

dt
(t) = (a+ ε)w(t) ∀t ∈ [0, T ] (15)

We will use x(t) for curves satisfying Inequality (11), y(t) to indicate
integral curves of Equation (13), w(t) for integral curves of 15.

See Figure (40)

1 We assume that we are above the horizontal axis, since the case of
x(t) = 0 ∀ t ∈ [0, T ] is settled – it is a common solution for all the
inequalities and equations. I.e. x = y = w = 0 for all t ∈ [0, T ] is a
solution. We also assume a > 0 because the case of a = 0 is immediate.

2 Since x(t) > 0 (Step (1)), we note x(s) = w(s) for some s ∈ [0, T ] implies
dx
dt (s) <

dw
dt (s) implying that (locally) x(t) crosses w(t) once at s, from

above to below as t increases.
3 Now suppose that x(r) > x(0)ear for some r > 0, contradicting 12.
4 We can choose y∗ = y(0) > x(0) such that y(r) = x(r), because we know

that the various y(t) curves we get by changing y(0) and solving 13

fill the first quadrant. Note that because a > 0 (Step (1)), the vertical
distance between the y(t) = x(0)eat and y(t) = y∗eat is never less than
δ ≡ y∗ − x(0) > 0.

5 By the continuity of the solutions w(t) with respect to ε, we get that
we can choose ε small enough w(t) = (x(0) + δ

2)e
(a+ε)t lies strictly

between y(t) = x(0)eat and y(t) = y∗eat for t ∈ [0, T ].
6 This forces x(t) to cross from below w(t) at t = 0 to above w(t) at t = r.

Because the curves are continuous, the curves must intersect, but by
Step (2), whenever they do, x goes from above w to below w as we
move from left to right. By continuity, the set of crossings has a right
most point u ∈ (0, r), such that x(t) > w(t) for u < t 6 r. But Step (2)
again implies this is impossible.
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Remark 8.2.7. Another proof is available if you have more sophisticated tools
at your disposal. For example, it is a theorem that you can choose coordinates
for the graph space of the family of solutions to ẋ = ax so that those solutions
(the integral curves) are horizontal lines. Then, a curve γ that starts on the
left below one of those integral curves and ends up above that horizontal line
on the right must have a positive slope at some point. But that violates the
assumption that the derivative of γ, in these transformed coordinates, must
never be positive.

Here is another much shorter proof. (Actually the geometric proof is
very short in conception but long in writing – which is a characteristic
of geometric approaches.)

Proof. Analytic Proof: Here we can get the proof by noting:

1

d

ds

(
x(s)e−as

)
= ẋ(s)e−as − ax(s)e−as

6 0

2 By integrating both sides, we get:

x(t)e−at − x(0) 6 0

which rearranges to the result we wanted.

Exercise 8.2.41. See if you can modify the second proof of Theo-
rem (8.2.6) to prove that if

dx

dt
(t) 6 ax(t) + b ∀t ∈ [0, T ].
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Then
x(t) 6 eat(x(0) + bt)∀t ∈ [0, T ].

Figure 40: Visual assistance for the geometric proof of Gronwall’s
inequality.

8.3 Play and the Art of Inequalities

As stated before the 10 previous subsections, mastery of the art of
inequalities requires immersion. Training the instincts – making the
grasp instinctive – is a much deeper task than shooting for mere
acquaintance. In the course of working in any area of analysis and
geometric analysis, that practice with inequalities will happen quite
naturally, but there are also nice references I recommend that focus
explicitly on inequalities.
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Hardy, L ittlewood and Polya [19 ] : The classic Inequalities, pub-
lished in 1934 and written by GH Hardy, JE Littlewood and G Polya
and is still used.

Burago and Zalgaller [9 ] : With the title Geometric Inequalities
it is no surprise that this is a book devoted to inequalities that are
geometric in nature. The authors are Yurii D. Burago and Viktor A.
Zalgaller. I recommend it highly. It was first published in Russian in
1980 and then translated by Springer in 1988.

Steele [39 ] : The Cauchy-Schwarz master class: an introduction to the art
of mathematical inequalities is a 2004 book by Michael J Steele, with the
flavor of a masterclass in book form. It will not be to everyone’s taste,
but it is definitely worth a look to see if it fits your learning mode.

Beckenbach and Bellman [7 ] : Inequalities by Edwin F Becken-
bach and Richard Bellman was first published in 1965. I do not have
this book, but plan on getting a copy. (I ran into it when using Google
Scholar to get the citations for the other three books here.)

Relatively simple exercises with inequalities make an almost ideal
warmup for hours devoted to analysis research. In the same way that
you warm up before full-on sprints, playing with inequalities can be a
fun and effective way to get yourself in the flow, the creative groove.
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9
L inearity :

L inear Spaces , L inear Maps ,
L inear Intuitions

While Chapter 5 made it clear that linearity is a crucially important
foundation for analysis, it was not explored or explained in that
chapter.

While I am sure that others might debate this – and that the debate
would be very interesting – I believe that the fundamental reason for
the importance of linearity is the existence of momentum and the
usefulness of smooth functions and objects. The idea that acceleration
requires force means that big objects move rather smoothly.

Intuitively, smoothness is the property of zooming in and finding that
the thing (path of movement, curve, surface, etc.) you are zooming in
on, looks flat. The more you zoom in, the flatter it looks. Of course
real objects are typically only approximated by smooth things – zoom
in far enough and you find details and roughness, even discreteness.

Simply put: Linear functions are useful because their level sets and
graphs are flat. And linear functions have very nice properties.

This chapter contains a simple sequence of definitions and properties
with examples and figures throughout, as well a section (Section 9.2)
that discusses why we care. While I am assuming you have seen linear
algebra before, linear algebra courses vary in content and perspective.
This chapter should serve to synchronize the readers with the particu-
lar way we will look at and use linear spaces and maps. In particular
note that this review is speedy and would be a challenging way to
first learn the linear algebra and geometry it contains.
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Note: we will often use the terms matrix and (linear) operator inter-
changeably even though a matrix is merely one, particular represen-
tation of a finite dimensional linear operator given a specific choice
of basis for the domain and for the range. While it is true that the
operator does not depend on the matrix (which typically changes
when we change the basis for either the domain or the range or both),
since we will usually be dealing with finite dimensional vector spaces,
often with particular bases in mind, the interchangeability will be a
rather harmless glossing over of details.

9.1 The Basic Ideas and Tools

9.1.1 Linear/Vector Spaces

A linear space X is another name for a vector space, and is (1) a
collection of points called vectors, together with (2) an operation of
addition “+” combining vectors to get new vectors and (3) a scalar
field S (either the real numbers R or the complex numbers C) that we
can multiply vectors by and get a vector as a result. More precisely,
if x,y, z ∈ X and α,β ∈ S, 0 is the additive identity in S, 1 is the
multiplicative identity of S and ~0 is the additive identity of X:

1 x+ y ∈ X
2 x+ y = y+ x

3 x+ (y+ z) = (x+ y) + z

4 x+~0 = x

5 For every x ∈ X there is a vector w ∈ X such that x+w = ~0. This is also
referred to as −x, so we have x+ (−x) = ~0

6 α(βv) = (αβ)v

7 (αv) + (βv) = (α+β)v

8 1v = v

9 0v = ~0
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Remark 9.1.1. We will usually use 0 to represent both ~0 and 0 if the intention
is clear from the context.

The span of a set of vectors {wi}
k
i=1 is the set of all weighted linear com-

binations: W ≡ {x ∈ X : x =
∑k
i=1 αiwi for some set of scalars {αi}

k
i=1}.

If W 6= X, W is called a linear subspace of X.

Any subset of a vector space X that can be represented as the sum of a
linear subspace W and an element y ∈ X,

W + y ≡ {x ∈ X : x = w+ y for some w ∈W}

is called an affine subspace of X.

Exercise 9.1.1. Show that if W is a linear subspace of X, an affine
subspace W + y is also a linear subspace of X if and only if y ∈W.

Definition 9.1.1 (Linearly Independent). A set of vectors {wi}
k
i=1 is

linearly independent if
∑k
i=1 αiwi =

∑k
i=1 α̂iwi implies αi = α̂i for all i.

Definition 9.1.2 (Independent Basis). A set of vectors {vi}
N
i=1 ⊂ X is

an independent basis for X if every x ∈ X has a unique representation
x =
∑N
i=1 αivi.

In many important cases, we need an infinite number of basis elements,
but we will mostly stick to the case in which n <∞. The number n is
the dimension of X.

9.1.2 Linear Maps

Definition 9.1.3 (Linear Map). A map from one vector space to another,
F : X→ Y is a linear map if

F(αx+βy) = αF(x) +βF(y)

for all x,y ∈ X and all α,β ∈ S.
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Notice that we can decompose this into two pieces:

F(x+ y) = F(x) + F(y)

and
F(αx) = αF(x)

for all x,y ∈ X and all α,∈ S. In other words scaling and addition can
be done before or after the mapping and you will get the same result.
These properties are very useful. For example, the scaling property
immediately implies that if for any ε > 0, we know F on B(0, ε), we
know it everywhere. Or, even if we know if only on ∂B(0, ε), the
sphere of radius ε, we know it everywhere. But we know even more.
Because it is linear, then for any basis {vi}

N
i=1 of X, knowing {F(vi)}

N
i=1

completely specifies F on all points in X!

Exercise 9.1.2. Show that the scaling property immediately implies
that if for any ε > 0, we know F on B(0, ε), we know it everywhere.

Exercise 9.1.3. Show that {wi}ki=1 is linearly independent if and only
if
∑k
i=1 α̂iwi = 0 implies that α̂i = 0 for all i.

Exercise 9.1.4. Show that if {vi}Ni=1 is a basis for the X, then knowing
{F(vi)}

N
i=1 completely specifies a linear map F on all points in X. Hint:

write an arbitrary x ∈ X in terms of the basis {vi}
n
i=1 and then compute

F(x)

Exercise 9.1.5. Show that F(span({wi}ki=1) = span({F(wi)}ki=1).

An affine map is any map F : X → Y, X and Y vector spaces, such that
G(X) ≡ F(x) − F(0) is a linear map.

9.1.3 Null Space

Suppose that A : X → Y is a linear map. We define the Null Space of
A to be A−1(0) ... the null space of A is the set of x ∈ X which map to
the 0 element of Y.
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Exercise 9.1.6. Show that for linear A : X→ Y, A−1(0) is either all of X
or a linear subspace of X.

9.1.4 Matrices

As noted in the linear map section, if {vi}ni=1 is a basis for the linear
space X and F : X→ Y is a linear map to the linear space Y, all we need
to know F(x) for all x ∈ X, is {F(vi)}

n
i=1.

Let {vi}ni=1 be a basis for X and {wi}
m
i=1 be a basis for Y. Suppose that:

F(v1) = F1,1w1 + F2,1w2 + ... + Fm,1wm

F(v2) = F1,2w1 + F2,2w2 + ... + Fm,2wm

...
...

F(vn) = F1,nw1 + F2,nw2 + ... + Fm,nwm

and let

MF ≡


F1,1 F1,2 · · · F1,n

F2,1 F2,2 · · · F2,n
...

...
...

Fm,1 Fm,2 · · · Fm,n

 .

We note that if we represent an arbitrary x = x1v1 + x2v2 + ... + xnvn
where the xi are scalar coordinates of x in the basis {vi}

n
i=1 and y =

y1w1 + y2w2 + ... + ymwm where the yi are again scalar coordinates of
y in the basis {wi}

m
i=1, then F(x) is the y ∈ Y with coordinates given by:

MF · x ≡


F1,1 F1,2 · · · F1,n

F2,1 F2,2 · · · F2,n
...

...
...

Fm,1 Fm,2 · · · Fm,n



x1

x2
...
xn


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i.e. letting

y ≡


y1

y2
...
ym


we get that

F(x) = y =


F1,1x1 + F1,2x2 + · · ·+ F1,nxn

F2,1x1 + F2,2x2 + · · ·+ F2,nxn
...
Fm,1x1 + Fm,2x2 + · · ·+ Fm,nxn



The matrix representation of F under the choice of basis of {vi}ni=1 for X
and {wi}

m
i=1 for Y is MF.

Remark 9.1.2. For the rest of the text, we will use x ∈ X to represent both the
point in the n-dimensional vector space X and the coordinate representation,
in column vector form. I.e. we will also mean:

x ≡


x1

x2
...
xn


where these coordinates are with respect to some basis. By xT we will mean
the transpose of x, the row vector:

xT ≡
[
x1 x2 · · · xn

]

If we define:

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
...

am,1 am,2 · · · am,n


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then the transpose of the matrix of A is given by:

AT =


a1,1 a2,1 · · · am,1

a1,2 a2,2 · · · am,2
...

...
...

a1,n a2,n · · · am,n



9.1.5 Norms

A norm on a vector space is a function || · || : X→ [0,∞) that satisfies:

1 ||x|| = 0⇔ x = 0

2 ||αx|| = |α| ||x|| ∀α ∈ S, where S is the scalar field for X.
3 ||x+ y|| 6 ||x||+ ||y||

We have already encountered norms in the chapter on metric spaces.

Exercise 9.1.7. Prove that norms are convex functions.

9.1.6 Norms of Maps

We define the operator norm of the linear map (or equivalently, opera-
tor) F to be

max
{x:||x||61}

||F(x)||.

Exercise 9.1.8. Prove that linear maps from Rn to Rm are continuous.

Exercise 9.1.9. Prove that what you proved in Exercise 9.1.8 implies
that the maximum in the definition of operator norm, above, actually
exists.
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9.1.7 Inner Products = dot products

You are already acquainted with dot products in Rn: x · y ≡ x1y1 +
x2y2 + · · · + xnyn. The dot product is just an example of an inner
product: We will now focus vector spaces where the scalar field is the
real numbers R. Any map from X×X→ R, where X is a real vector
space, satisfying

1 〈x,y〉 ∈ R

2 〈x, x〉 > 0 and 〈x, x〉 = 0⇔ x = 0

3 〈x,y〉 = 〈y, x〉
4 〈αx+βy, z〉 = α 〈x, z〉+β 〈y, z〉 (and so of course 〈z,αx+βy〉 = α 〈z, x〉+
β 〈z,y〉 as well)

is called an inner product on X

Exercise 9.1.10. Show that the usual dot product satisfies these re-
quirements and is therefore an inner product.

Exercise 9.1.11. (Challenge): Use matrix representations of linear
maps to show that any inner product 〈x,y〉, expressed in a chosen
basis, can be represented by xTAy, where A is a symmetric matrix.

An n-dimensional vector space X, with an inner product 〈x,y〉 = xTAy
for some n-by-n matrix A and a norm | · | defined by

|x| ≡
√
〈x, x〉

is called an inner product space. Note that Rn with the usual dot
product is an inner product space.

Remark 9.1.3. If we are working in a vector space over the complex numbers,
while it is still true that 〈x, x〉 > 0 if x 6= 0, the inner product also satisfies
〈x,y〉 = 〈y, x〉∗ where the ∗ indicates complex conjugation. As a result, while
〈x,y〉 is linear in the first term, it satisfies 〈x,αy+βz〉 = α∗ 〈x,y〉+β∗ 〈x, z〉
in the second term. One simple inner product in Cn is just the usual dot
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product between the first vector and the complex conjugate of the second
vector: 〈x,y〉 ≡ x · y∗

9.1.8 Orthogonality, Orthogonal Subspaces and Projections

Suppose that X is an inner product space. Two non-zero vectors
x,y ∈ X are said to be orthogonal if 〈x,y〉 = 0.

The angle between two non-zero vectors in an inner product space is
defined to be

θ ≡ arccos
(
〈x,y〉
|x| |y|

)
.

A set of vectors are said to be orthogonal if the inner product of any
two distinct vectors in the set is equal to 0. Given any k-dimensional
subspace W, one can always find a set of k vectors which are orthogo-
nal that span W. We will look at a method for finding this spanning
set in Section 9.1.10.

A basis (i.e. an independent basis) for X that is also orthogonal is said
to be an orthogonal basis.

Suppose that {vi}ki=1 is an orthogonal set of vectors in an n-dimensional
space. Then, defining

V ≡

 | | · · · |

v1 v2 · · · vk

| | · · · |


we define the orthogonal projection onto span({vi}ki=1), PV to be

PV ≡ VVT .

See Figure 41.

We say that two linear subspaces of X, V andW, are orthogonal subspaces
to each other if 〈v,w〉 = 0 for all v ∈ V and w ∈W. If V +W = X and V
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Figure 41

and W are orthogonal to each other, we say that V is the orthogonal
complement of W and W is the orthogonal complement of V .

We say that P is a projection operator if P ◦ P = P. A projection is an
orthogonal projection if 〈x− P(x),P(x)〉 = 0. That is, if after projecting
an x onto the range of P, the residual x− P(x) is orthogonal to x.

Exercise 9.1.12. Show that a projection operator satisfies P(x) = x for
any x in the range of P.

Exercise 9.1.13. Show that if x ∈ span({vi}ki=1), then PV (x) = x.

Exercise 9.1.14. Show that the range of I− PV and the range of PV are
orthogonal complements.

Exercise 9.1.15. Show that the “orthogonal projection onto span({vi}ki=1), PV”
is indeed, an orthogonal projection according to the definition just
given.

Exercise 9.1.16. Suppose that A is matrix representing a transformation
from Rn to Rm, m < n. Suppose that {wi}mi=1 ⊂ Rn are the m rows of
A. Show that the null space is precisely the orthogonal complement of
the span({wi}mi=1).
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9.1.9 Singular Value Decomposition (SVD)

Every m by n matrix A ∈ Rmn has a decomposition:

A = UΣVT

where U is an m×m orthogonal matrix, V is an n× n orthogonal
matrix, and Σ is an m×n diagonal matrix, with ordered, non-negative
diagonal entries. See Figure (42).

Figure 42

Exercise 9.1.17. Show how to use the SVD of a matrix A to find the
null space and range of A.

Exercise 9.1.18. Assume that A is an n× n, invertible matrix. Show
that errors in the solutions to the linear equation Ax = b, that occur
when b is perturbed by noise to b+ η instead – i.e. that the difference
between the solution of Ax = b and Ax = b+ η – is bounded by |η|

σmin
where σmin is the smallest singular value of A. Since we are assuming
A is nonsingular, σmin > 0. Hint: Use the SVD to (1) compute A−1 and
(2) examine the effects of A−1 on η. Alternatively write x and b in the
basis created by the rows of VT and the columns of U, the left and
right orthogonal matrices from the SVD.
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9.1.10 QR Decomposition

Given k independent vectors in Rn, {vi}ki=1, k 6 n, we can find an
orthonormal basis of Rn, {xi}ni=1 (a set of orthogonal vectors, each of
length 1, that span Rn), such that:

Condition 9.1.1 (GS-condition). We have:

span(v1) ⊂ span(x1)

span({vi}2i=1) ⊂ span({xi}2i=1)

span({vi}3i=1) ⊂ span({xi}3i=1)
...

span({vi}ki=1) ⊂ span({xi}ki=1)

This can be done using the Gram-Schmidt procedure.

A little more generally, if we are given given m (not necessarily inde-
pendent) vectors in Rn, {vi}mi=1, (with m > n possible), an orthogonal
basis can be found that satisfies Condition 9.1.1 for k 6 n and, of
course satisfies span({vi}ki=1) ⊂ span({xi}ni=1) = Rn for k > n (in the
case that m > n)

Remark 9.1.4. The GS condition is chosen so that it applies to both to
independent and non-independent {vi}ki=1. If we were only concerned with
independent {vi}ki=1, all the subset symbols (i.e. ⊂) in the condition could be
replaced by equal symbols (i.e =).

The QR decomposition is the matrix decomposition that accomplishes
this, giving us this basis and the coefficients that allow you to get the
vi’s from the xi’s. More concretely, suppose that we define V to be the
matrix whose columns are the vectors {vi}

m
i=1. Then:

Theorem 9.1.1 (QR Decomposition). There is an orthogonal, n× n ma-
trix Q and an upper triangular, n×m matrix R such that V = QR. See
Figure (43)
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Remark 9.1.5. Notice that the fact R is an upper triangular matrix implies
that the columns of Q give us the xi’s, that together with the vi’s give us
Condition 9.1.1.

Figure 43

Exercise 9.1.19. (Challenge) Suppose that {vi}
k
i=1 ⊂ Rn are linearly

independent. Show how to find orthonormal vectors {xi}
k
i=1 such that

Condition 9.1.1 is satisfied. Hint: Define x1 = v1
|v1|

. Define Px1 to be the
orthogonal projection onto the span of x1 and consider Px1(v2) and
(I− Px1)(v2) ...

9.1.11 Symmetric, Normal

Linear operators represented by symmetric matrices play a important
role in mathematics and physics. Because we sometimes work with
vector spaces over the real numbers and sometimes over the complex
numbers, we differentiate between the two in this section. One impor-
tant reason we care about complex matrices is that the eigenvalues
of a real matrix can come in complex conjugate pairs. Another im-
portant reason is that mathematical physics in general, and quantum
mechanics in particular, use complex operators and complex states to
represent highly validated, everyday (though microscopic) physics.
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A real matrix is said to be symmetric if A = AT . An operator or matrix
A is symmetric and positive definite if A = AT and xTAx > 0 whenever
|x| > 0.

In the case that the matrix is complex, we call the matrix that satisfies
A = A†, Hermitian, where the † indicates we have taken both the
transpose and the complex conjugate of the matrix.

We note that in the case that A is a real matrix, A = AT ⇔ A = A†.
(Which means if we were most concerned about brevity, we could
dispense with the definitions focused only on real matrices, but this is
not the choice here – sometimes brevity does not clarify.)

A real matrix (or operator) A, is a normal matrix (or operator) if ATA =

AAT . A complex matrix (or operator) A, is a normal matrix (or operator)
if A†A = AA†.

A term that is used for both symmetric and Hermitian matrices and
operators is self adjoint. It comes from the fact that the adjoint of an
operator A on an inner product space X with inner product 〈, 〉 is the
operator A∗ defined to be the operator that satisfies 〈A∗x,y〉 = 〈x,Ay〉
for all x,y ∈ X. Self adjoint means that A = A∗. in the case of
matrices, self-adjoint means symmetric (in the case of real matrices)
and Hermitian (in the case of complex matrices).

9.1.12 Determinants

In the courses (or even courses) you have taken in linear algebra, you
have certainly encountered the determinant of a matrix: for the simple
two by two matrix,

A ≡

[
a11 a12

a21 a22

]
,

you certainly know that

det(A) = a11a22 − a21a12.
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It is less certain that you have encountered the geometric interpreta-
tions or the connections to exterior vector algebras.

In this short section, I will guide you to an understanding that the
determinant of a matrix is a signed volume of the parallelogram
defined by the columns of the matrix.

9.1.12.1 Determinants are Signed Volumes

We will show this by a sequence of definitions and exercises with
hints.

1 We define the determinant of an nxn matrix

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
...

an,1 an,2 · · · an,n


=

 | | · · · |

a1 a2 · · · an

| | · · · |



to be:

det(A) =
∑

σ∈Perm(n)

sign(σ)Πni=1ai,σ(i)

Note: sign(σ) is 1 or −1 depending on whether the permutation σ is
even or odd.
Exercise 9.1.20. Show that the determinant is the sum of all products
defined by paths through the matrix hitting each row and column
exactly once (with sign determined by the sign of the path viewed as
a permutation).
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2 Connection to k-vectors: The wedge product of k vectors in Rn, a1 ∧
a2 ∧ · · ·∧ ak is an element in a vector space – the space of k-vectors –
with dimension n!

k!(n−k)! . The wedge product is linear in each factor

a1 ∧ · · ·∧ (αai +βbi) ∧ · · ·∧ ak
= α(a1 ∧ · · ·∧ ai ∧ · · ·∧ ak)
+ β(a1 ∧ · · ·∧ bi ∧ · · ·∧ ak)

and it is alternating – i.e. if you switch any pair of terms, the sign of
the result changes.
Exercise 9.1.21. Prove that:
a The space of n-vectors created wedging together vectors from Rn

has dimension 1.
b If {ei}ni=1 are orthogonal basis vectors for Rn, show that

a1 ∧ a2 ∧ · · ·∧ an = det(A) · e1 ∧ e2 ∧ · · ·∧ en

.
3 Properties of Determinants:

Exercise 9.1.22. Prove the following properties of the determinant:
a Switching two columns of a matrix changes the sign of the deter-

minant
b The determinant is linear in each column.
c det(A) = det(AT ). Hint: sign(σ−1) = sign(σ) for all σ.
d Part (a) implies the determinant of a matrix with two identical

columns is 0.
4 The matrix Rθi,j rotates space by rotating everything in the 2-dimensional

subspace spanned by the ith and jth basis vectors by θ:
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Rθi,j =

1 2 · · · i · · · j · · · n

1

2
...
i
...
j
...
n



1 0 · · · 0 · · · 0 · · · 0

0 1 · · · 0 · · · 0 · · · 0
...

...
...

...
...

0 0 · · · cos(θ) · · · − sin(θ) · · · 0
...

...
...

...
...

0 0 · · · sin(θ) · · · cos(θ) · · · 0
...

...
...

...
...

0 0 · · · 0 · · · 0 · · · 1


Exercise 9.1.23. Prove that det(Rθi,j) = 1 and that det(Rθi,jA) = det(Rθi,j)det(A)
using the linearity in each column and the fact that switching columns
changes the sign.

5 Creation of orthogonal matrices:
Exercise 9.1.24. Show that you can create any orthogonal matrix Ô by
a product of Rθi,j’s and perhaps one coordinate flip (reflection about
one n− 1-plane), more specifically either:

Ô = I ◦
(
Πn−1i=1 R

θi
i,i+1

)
or

Ô = Î ◦
(
Πn−1i=1 R

θi
i,i+1

)
where I is the identity matrix and Î is the matrix with ones down the
diagonal except that In,n = −1. Hint: an orthogonal matrix is a matrix
whose columns are orthogonal to each other and have unit norm. Turn
the identity matrix I into Ô, through a sequence of rotations that rotate
each column (each of which start out as a single 1 in some row), from
left to right, into the columns of Ô through pairwise rotations. Note:
Πki=1Ai = Ak ◦Ak−1 ◦Ak−2 ◦ · · · ◦A1, i.e. we are defining a product in
which the multiplication is on the left.

6 Odds and ends:
Exercise 9.1.25. Prove:
a det(diagonal matrix) = product of the diagonal elements
b If Σ is a diagonal matrix, det(Σ ◦A) = det(Σ)det(A)
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c det(Î) = −1

d Use the fact that, for any n by n matrix A, A = U ◦ Σ ◦ VT where
U and V are orthogonal matrices and Σ is a diagonal matrix with
non-negative elements to get that:

det(A) = ±|volume of image of [0, 1]n under A|

= ±Πni=1σi

where {σi}
n
i=1 are the singular values of A and the sign depends on

the orientation of A
7 Products, in general:

Exercise 9.1.26. Prove that det(AB) = det(A)det(B). Hint: use the
SVD to write A = U ◦ Σ ◦ VT and Exercises 9.1.23 and 9.1.24.

The fact that det(A) = oriented volume of the parallelepiped generated
by the columns of A is used all over geometric analysis.

9.1.13 Eigenstuff

A very important decomposition of a linear operator is the eigenvalue-
eigenvector decomposition. Not every linear operator has such a decom-
position, but when it does, this gives us a very simple representation
of the operator. The eigenvalue equation is:

Ax = λx

and the components of the solution pairs {x, λ}, are called eigenvectors
and eigenvalues, respectively. The eigenvalues are scalars that can be
complex – they can have nonzero imaginary parts.

We will deal mostly with the case in which A is real. If A : Rn → Rn is
also symmetric, we automatically get a complete set of real, orthogonal
eigenvectors with real eigenvalues.

In this case, if we use the eigenvectors of A as the basis for the space,
and we define V = the n by n matrix in which each of the columns is a
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different eigenvector and Λ is the diagonal matrix with the eigenvalues
along the diagonal, we get

AV = VΛ

implying that
A = VΛV−1 = VΛVT

which in turn implies
VTAV = Λ

that is, if we use the (orthogonal) columns of V as a basis for Rn, then
the A is a diagonal matrix.

In the case that A is real and normal, we may get complex eigenvalues
and the closest we can get to a real decomposition is one in which
pairs of orthogonal vectors span an invariant space that is rotated by
A.

Exercise 9.1.27. Show that det(A− λI) = 0 if λ is an eigenvalue of A.

Exercise 9.1.28. By computing the determinant, det(A− λI), show that
for every distinct eigenvalue of A, there is at least one eigenvector.

Exercise 9.1.29. (Challenge) Show that if A : Rn → Rn and A = A†,
then (1) the eigenvalues are real and (2) the eigenvectors form an
orthogonal basis for the Rn.

Exercise 9.1.30. Look up and read about the Jordan normal Form for
real, n×n matrices. This form is the best we can do in the case that A
is not normal. If we work over the complex numbers, then the Jordan
normal form has all its nonzero entries on either the diagonal or first
super-diagonal. If we work over the reals, we get a matrix whose
non-zero entries are restricted to the main diagonal and the first super
and sub-diagonals.

Remark 9.1.6. If A : Rn → Rn is normal, i.e. AA† = A†A, then there
is a complete basis of orthogonal (possibly complex) eigenvectors. One can
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diagonalize A with a real, orthogonal basis where there are either real eigen-
values or 2 by 2 blocks along the diagonal. The 2 by 2 blocks correspond to
2 dimensional invariant subspaces which A rotates by some angle θ and the
resulting 2 by 2 block is [

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

9.1.14 Extra Exercises

Exercise 9.1.31. Given k vectors, {vi}ki=1 ⊂ Rn, k < n, show how to use
the QR decomposition to find the dimension of the span({vi}ki=1).

Exercise 9.1.32. Given k independent vectors, {vi}
k
i=1 ⊂ Rn, k < n,

show how

1 to use the QR decomposition to compute the orthogonal projection
operator onto span({vi}ki=1).

2 to use the QR decomposition to create a linear mapping from Rn to
Rn−k with null space equal to span({vi}ki=1).

9.2 Remarks on Linear and Nonlinear Spaces and Maps

9.2.1 Linear vs Nonlinear

Minimalistic, almost knee-jerk, pictures of linearity and non-linearity
are:

L inear flat planes of various dimensions, very simple descriptions,
local = global

Smooth , Non -linear wild behavior/shape possible, complex de-
scriptions, local structure 6= global structure, but(!) locally linear
everywhere (because of everywhere differentiability!)
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Nonsmooth (and of course , Nonlinear ! ) completely wild be-
havior/shape possible, arbitrarily complex descriptions, local structure
6= global structure and not(!) locally linear everywhere (i.e. not differ-
entiable everywhere!)

Because many nonlinear things are mostly locally linear – differentiable
everywhere or almost everywhere – we can leverage our mastery of
things linear to begin to get a real grasp on things non-linear. And
many phenomena/dynamics in nature are approximately or locally
linear between singularities, those discrete events completely outside
of the realm of linear behavior.

A great deal of insight into nonlinear sets, maps and evolution can be
gained by understanding linear and quadratic approximations (i.e. the
first and second order derivatives). Furthermore, the more intricate
approaches to nonlinear problems often mimic the ideas that come
from these first and second order approximations.

9.2.2 Some Simple Examples

Figures 44-49 give simple examples that are helpful in creating visual
bookmarks to the nature of linearity (and of non-linearity):

9.2.3 Maps and linearity (or lack of it)

There is a hierarchy of complexity in the world of maps. Both maps
and spaces can be:

1 Linear
2 Smooth and Nonlinear
3 Nonsmooth (and therefore also Nonlinear)
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Figure 44: The difference between affine and linear subspaces.
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Figure 45: Level sets of linear functions are linear (or affine) subspaces
of the domain.
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Figure 46: Example of a hyperplane.

Figure 47: Example of the graph of a smooth (locally linear approxi-
mations everywhere) function from R to R.
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Figure 48: Example of a graph of a function with many points of
nonsmoothness.

Figure 49: Example of a graph of a function with no smoothness.

For example, we can have a smooth, nonlinear map between a linear
space and a nonlinear space:

{linear space}
smooth, nonlinear map
−−−−−−−−−−−−−−→ {nonsmooth, nonlinear space}

There are two restrictions: (1) the map can be linear if and only if the
domain and range are linear spaces and (2) The map can be smooth if
and only if both domain and range have locally linear approximations.

Remark 9.2.1. There is a subtle detail here – a nonsmooth set can have
locally linear approximations almost everywhere, in which case we can (in
many cases) ignore the places where there is no locally linear approximation.
We will see this with the very useful nonsmooth sets known as rectifiable sets
(see chapter 15).

The combination with the potential for the most complexity is the case
in which the domain, map and range are all nonsmooth and nonlinear.
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9.2.3.1 More Examples

Everything L inear The usual equation studied in linear algebra
courses,

Ax = b

where b ∈ Rm and x ∈ Rn and A is an m by n matrix defining a
linear map from Rn to Rm is studied for a reason – it is exceedingly
useful and very general. It is not an exaggeration to say that almost all
applied mathematics problems, at one point or another, either reduce
to solving Ax = b or to a sequence of such problems. Here is a simple
example in which the domain is infinite dimensional – the space of
continuous functions on the unit interval:

F : C([0, 1])→ R defined by F(g) ≡
∫1
0

g(x)dx

where C([0, 1]) is the infinite dimensional space of continuous maps
from the unit interval to the real numbers, with the sup norm defined
by |f− g| ≡ supx∈[0,1] |f(x) − g(x)|. See Figure 50.

Figure 50: A linear map from C([0, 1]) to R.
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L inear Spaces The space Rn is the most commonly used linear
space. Linear and nonlinear maps from Rn to Rm are the setting for a
great deal of geometric analysis, as is the study of sets and measures
in and on Rn. Other common normed linear spaces are usually
either Hilbert spaces or Banach spaces. (Recall that Banach spaces
are complete, normed linear spaces and Hilbert spaces are complete,
normed linear spaces with an inner product that generates the norm,
|x| =

√
〈x, x〉). The following map is a nonlinear map from the Banach

space C([0, 1]) to the Hilbert space R For example:

F : C([0, 1])→ R defined by F(g) ≡
∫1
0

|g(x)|3 + |g(x) − 1|2dx.

Nonlinear Spaces When the spaces are nonlinear, the map must
also be, because the definition of a linear map implicitly assumes
both the domain and the range are linear spaces. The most common
example in this category are mappings between manifolds – think of
surfaces in Rn, like maps between the torus and the sphere in R3. See
Figure 51.

Everything Nonsmooth Suppose that the spaces we are inter-
ested in are fractal sets in R2 or if we are interested in slightly less
exotic cases, we might pick as domain and range, sets in R2 which are
themselves images of Lipschitz maps, and study Lipschitz maps be-
tween those spaces. An example of a mapping between a non-smooth,
nonlinear domain and a piece of the extended reals, would be that
given by a measure: See Figure 52. Another example of a map between
the R and a nonsmooth, nonlinear space is that induced by the graph
of a nonsmooth map. See Figure 53.

Exercise 9.2.1. Think about how nonsmoothness might arise. What
processes lead to nonsmooth functions, shapes or dynamics? This is
really an invitation to dig around, explore, even speculate. If you need
a place to start, you can begin by looking at where, in nature, you
would find shapes that seem to be modeled pretty well by fractals.
There is another well studied phenomena called Diffusion-limited
aggregation you might want to look at as well. But there are many
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Figure 51: Smooth map between the 2-torus and the 2-sphere.

196



9.2 remarks on linear and nonlinear spaces and maps

Figure 52

Figure 53: Example of a nonsmooth range.
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other places to look, and simply trying to imagine how something
could end up being non-smooth is not a bad place to start.

9.2.3.2 Practical Considerations

Linear maps are easily and simply specified once we have chosen
a basis for the domain and a basis for the range. If the dimension
of the domain is n and the dimension of the range is m, then the
mapping is specifies by an m-by-n matrix of real numbers. On the
other hand, a nonlinear map might be so complicated that we must
simply define it by what it does on a very dense set of points in the
domain. Suppose that n = 100 and m = 100, then while a linear
map requires a specification of a 100-by-100 matrix, we might need
to simply record the values of a nonlinear map on

(
1
∆

)100 points,
where ∆ is the lengthscale at which the map is regular enough to
allow samples spaced this far apart to be a good representation of the
map. Supposing that the domain is the unit cube in R100 and that
∆ = .01. This implies that we must record the value of the map on
100100 = 10200 points – a truly ridiculous number of points since this
is greater than the estimated number of particles in the universe, or
even the number of edges and vertices in the complete graph whose
vertices are the particles in the universe!

Exercise 9.2.2. (Challenge) Construct a continuous function f : R→ R

such that, for any continuous function g : [0,k] → R and any ε > 0,
there is an integer m such that maxx∈[0,k] |f(x−m) − g(x)| < ε. Hint:
Use the fact that any function on a compact interval [a,b] can be
arbitrarily well approximated by a polynomial on that interval. Then
use the fact that we can assume the coefficients of the polynomial are
rational.
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10
Approximations :

Metrics , Norms , and Convergence

10.1 Why Approximation?

The heart of this part of the book is a detailed first look at differen-
tiation, measure, and integration. The key idea in differentiation is
local approximation. That idea is also key to understanding nuanced
ideas in measure and integration. So we will prepare for the next three
chapters by spending a little bit of time looking at approximation,
as well as the metrics and norms that measure approximation and
convergence.

Of course there are reasons other than the use of approximation in
differentiation to understand and use approximation. Here are some
examples. In these examples, we are measuring closeness or distance
with some norm indicated by | · |.

Solving Ax = b When we set about solving Ax = b for x ∈ Rn, given
b ∈ Rk and a linear transformation A : Rn → Rk, it is often the case
that the given b is a noisy or perturbed b, b̂ ≡ b+ε for some (hopefully
small) ε ∈ Rk. In this case we will find x̂, the solution to Ax = b̂. A
very reasonable question is, how close is x̂ to x? I.e. how big is |x− x̂|?
where | · | is some norm, for example the Euclidean norm. Things
might be more interesting: The matrix we are using could also be a
noisy version of A, which we will call Â. Now we are actually solving
Âx = b̂ to get ˆ̂x – i.e. Â ˆ̂x = b̂. Again, how big is |x− ˆ̂x|? Can we bound
it in terms of the sizes of |A− Â| and |b− B̂|?

F inite D imensional Approximations Very often the sets, func-
tions, and measures we are interested in live in some infinite dimen-
sional space X. To do any computing, we use finite dimensional
approximations to X, Fk. That is, we try to find a k-dimensional sub-
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space Fk ⊂ X such that for the points x ∈ X of interest or importance,
there is a point f ∈ Fk such that |x− f| < δ.

Approximation as a Technical Tool We can sometimes prove
results using approximation. We will see that locally linear approxi-
mation

F(x+ h) − F(x) ≈ DxF(h)

means that results easily shown for linear maps, are also provable
for differentiable nonlinear maps. Two important examples to be
encountered in the next chapter are the inverse and implicit function
theorems.

Definition by Approximation Suppose we have a set Y ⊂ X that
is dense in X, i.e.

∀{x ∈ X, ε > 0} ∃y ∈ Y such that |x− y| 6 ε.

and on Y we can define a functional F : Y → R that is also continuous
on Y, but undefined on X. Then we can define F on X by approximation.
Because Y is dense in X, for any x ∈ X \ Y, define F(x) = limi→∞ F(yi)

where {yi}
∞
i=1 is any sequence such that x = limi→∞ yi. Because F is

continuous on Y, it does not matter what sequence converging to x
that we use.

10.2 Metric Spaces, Again, and What They Give Us

In some ways, the study of metric spaces tell us how much we can
learn about spaces and maps between them if all we have is the notion
of approximation in the form of the metric. As a result, the entire
previous chapter on metric spaces has already demonstrated that
approximation can be used quite fruitfully!

Metric spaces also demonstrate what we lose by not having other,
additional structures or properties.

For example, in a general metric space X, for any x,y ∈ X, there is
no easy way to make sense of x+ y, let alone 〈x,y〉 or αx+ (1− α)y.
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(But see the relatively new area of analysis in metric spaces. See for
example [4, 5, 2, 6, 21, 20], the last three of which are most introductory,
though they assume a course in analysis.)

We can use an even weaker notion of closeness not derived from a
distance to get some of these notions. All we really need are open
sets, i.e. a topology. Using only open sets, we can get continuity,
connectedness, compactness and convergence.

But a metric encodes the notion of closeness and approximation in a
very straightforward way. The fact that we can use topologies (without
metrics) to define open and closed sets and then use those to define
things like continuity, connectedness, compactness and convergence
does not imply that we should dispense with the distance. In many
cases, it is more natural to work with the distance and to use it as
needed.

In fact, instead of less structure (because we can) we will require
more structure, because there are things we want to use that are most
naturally obtained when the metric space is also a complete vector
space with an inner product – such a space is called a Hilbert Space.

More concretely, while the concepts/tools of

1 approximation or closeness – directly encoded in the metric
2 continuity of maps from a space to itself or between two spaces
3 connectedness of a space or subset of a space
4 compactness of a space or subset of a space
5 convergence of a sequence of points

are given to us by the metric, the concepts and tools that require/imply
extra structure include:

1 addition of elements in the space (vector space structure)
2 multiplication of points in the space by a scalar (vector space structure)
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3 existence of a basis for the space (vector space structure)
4 differentiation (vector space structure)
5 angles (vector space structure and an inner product)
6 spatially invariant metric (e.g. vector space norm)

We next look at the increased structure we will use, after which we
will look at an example of the geometric implications of the choice
of metric. A penultimate section on the geometry of the particular
metrics we will most often be using – vector norms on Rn, is followed
by a final section on convergence.

10.3 Finding the Sweet Spot between Generality and Structure

In mathematics, there is almost always a tradeoff between (1) generality
and (2) richness of results we can prove and objects (sets, measures)
and mappings that can be carefully explored.

In this text we will focus in Rn and what flows from considering sets,
measures and functions/mappings in and on Rn. See Figure 54:

The key point: a vector space structure that comes from an inner
product on a space that is both complete and finite dimensional, is
enough structure to open the door to a very rich collection of subsets,
measures and mappings that can be explored and understood with
great precision.

You have already encountered many examples of this wild menagerie
in Chapters 4-8

We now look at one particular family of metrics on the space of
functions from R to R.
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Figure 54: A cartoon of the choice of Rn as the sandbox we will focus
on.
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10.4 Geometry imposed by metrics: A (deceptively) simple example

Define the following family of metric-like functionals on the space of
differentiable functions f : R→ R such that ∇f has compact support
(i.e. there is a compact set K ⊂ R such that ∇f(x) = 0 for all x ∈ R \K):

|f|BV(p) ≡
∫

R

|∇f|pdx

where p > 0. (It turns out that the case of p = 1 is very interesting
and filled with nuances, especially when you consider the analog for
f : Rn → R. We will not get into those details now, but the curious can
get a sense for what is involved by consulting chapter 5 of Evans and
Gariepy’s Measure Theory and Fine Properties of Functions [12].)

We will sometimes be interested in using this functional to encourage
smoothness. For example, if d(x) is a measured function that we know
is noisy, then we could minimize:

Fp(f) ≡
∫

R

|∇f|pdx+ λ
∫

R

|f− d|dx

so that we are trying to find a function that is not to far from the data
(i.e. the second term is not too big) but it is also not too noisy (i.e. the
first term, measuring oscillation, is not too big).

This is, in fact, a family of functionals that appears in the signal
processing literature, at least for some values of p. We now make a
simple observation that F1(f), taken to its full generality on functions
f : Rn → R, encounters deep waters (in fact it is the focus of the
famous theorem 4.5.9 in Federer’s Geometric Measure theory [13]).

Consider the family of functions fδ defined by:

fδ ≡


0 ∀x < 1− δ
1
δ(x− 1+ δ) for x ∈ [1− δ, 1]
1 x > 1

Computing, we get:
|fδ|BV(p) = δ

1−p
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from which we conclude that, while for p > 1 we are biased towards
smaller slopes (we want big δ’s) – smoother functions – and p < 1

we are biased towards discontinuities (δ = 0), for p = 1 we don’t care
about how the function gets from 0 to 1 as long as the function is
monotonic. Edges (discontinuities – in the limit) are fine. That turns
out to have deep ramifications. See Figure 55.

Figure 55: The choice of p determines whether we are biased for jumps,
biased against jumps or are agnostic about jumps.

Remark 10.4.1. The nuances and depth in the study of F1(f) come from the
first term in the function – the BV seminorm, which is defined for functions
with discontinuities. Functions for which the first integral is finite are called
BV functions. The theory of BV functions is the focus of that famous theorem
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in Federer’s book – Theorem 4.5.9 mentioned above. The theorem statement
alone takes up three and a half pages!

Exercise 10.4.1. (Challenge) In this exercise we consider |f|BV(p) in
the case that p = 1, which we refer to as |f|BV – the BV seminorm.
The exercise invites you to explore, perhaps resorting to Chapter 5 of
Evans and Gariepy’s book, [12], after you have spent some significant
time thinking about the exercise.

1 Suppose that f : R → R is a piecewise smooth function with a finite
number of jump discontinuities, such that K ≡ clos({x | f(x) 6= 0}) (the
closure of the set where f 6= 0) is a compact subset of R. See if you
can define ∇f (= df

dx ) by thinking of it as a the sum of a function g(x)
and a finite sum of weighted Dirac measures (i.e. Dirac δ “functions”),∑M
i=1miδ(x− ai):

∇f = g(x) +
M∑
i=1

miδ(x− ai)

such that the integral

∫
R

|∇f| dx =
∫

R

|g(x)|dx+

M∑
i=1

|mi| = lim
i→∞

∫
R

|∇fi|dx

where fi(x) is a sequence of Lipschitz functions converging to f(x):∫
R

|f(x) − fi(x)|dx→ 0.

Note: the weights mi are real values.
2 Suppose that f : R2 → R. See if you can’t define ∇f as a sum of a

smooth, compactly supported vector field and a sum of vectorfields νi,
multiplying 1-dimensional Hausdorff measure restricted to the jump
set (the curves where f(x) has jump discontinuities) in the case that
f(x) is the sum of a smooth function and a “cartoon”* – a piecewise

*This terminology comes from the area of image analysis/processing, where a
“cartoon” is a piecewise constant image.
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constant function with compact support that attains a finite number of
positive values {vi}

M
i=1 – and Ei ≡ f−1(mi) each have smooth, simple

closed boundaries ∂Ei and ∂Ei ∩ ∂Ej = ∅ when i 6= j . I.e. you are
aiming to prove that, for your definition of ∇f:

∇f ≡ ~g(x) +

M∑
i=1

~νi(x)
(
H1 ∂Ei

)
you have that

|fi|BV →
i→∞

|∇f|BV =

∫
|~g(x)|dx+

M∑
i=1

∫
∂Ei

| ~νi(x)|dH
1

for smooth approximations of f, fi. Remarks: Note:
a for a measure µ and a set E, µ E means µ restricted to E and is

defined by

µ E(Ω) ≡ µ(Ω∩ E)

b Likewise f E is defined to be f · χE, where f is a function or a
vectorfield, and f µ, where f is a function and µ is a measure is
defined by:

f µ(Ω) ≡
∫
Ω

fdµ

c You are welcome to assume that the νi’s are the inward pointing
vector fields with constant magnitude vi. But to actually figure out
what the vectorfields νi should be, you need to find the

νi ∂Ei

such that ∫
R2
χEi∇ · ~φ =

∫
R2
∇χEi · ~φ.

You are essentially figuring out what makes the divergence theorem
work for the generalized gradient of a characteristic function χE.
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10.5 Approximation Theorems: Two Examples

While there is an entire area of mathematics – approximation theory –
that deals with approximation questions, we will illustrate the kinds
of results possible with two examples: (a) approximation of functions
in Lp spaces with smooth functions and (b) the Weierstrass polynomial
approximation theorem.

For both of these results, I state the theorems and explain them, but
will refer you to my favorite references for proofs and more details. If
you are a student of mine, reading this, there is a good chance you
already have the references I will recommend.

10.5.1 Approximation in Lp Spaces

For many more details, see Evan’s and Gariepy [12], Chapter 4.

Recall from 8.2.7 that for any 1 6 p <∞, a function f : U ⊂ Rn → R is
in Lp(U, R) if ∫

U

|f|pdµ <∞

in which case we define the p-norm | · |p on Lp(U, R) by

|f|p ≡
(∫
U

|f|pdµ

) 1
p

where µ is often taken to be the usual n-dimensional Lebesgue mea-
sure.

Now we (somewhat informally) define a bump function of arbitrary
width – See figure 15.3.4.

1 define η0 = any smooth (i.e. C∞), non-negative function supported
in the unit ball in Rn that increases as |x| decreases and is symmetric
about the origin – i.e. η0(−x) = η0(x).
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10.5 examples of approximation theorems

Figure 56: Example of mollification (smoothing) in 1-dimension.
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2 Because η0 is continuous on a compact set, it is bounded, so we know
that

cη0 ≡
∫

Rn
η0dµ =

∫
B(0,1)

η0dµ <∞.

3 Define

η(x) =
1

cη0
η0(x)

immediately giving us that∫
Rn
η(x)dµ(x) =

∫
B(0,1)

η(x)dµ(x) = 1

4 Define the mollifier of radius ε to be

ηε(x) ≡
1

εn
η
(x
ε

)
and note that ∫

Rn
ηε(x)dµ(x) =

∫
B(0,ε)

ηε(x)dµ(x) = 1

5 The ε-mollified version of f : U ⊂ Rn → R to be:

fε ≡ ηε ∗ f

where the convolution g ∗ h is defined by:

g ∗ h(x) ≡
∫

Rn
g(x− y)h(y)dµ(y)

Theorem 10.5.1 (Approximation with C∞ functions; See [12]). Suppose
that f ∈ Lp(Rn, R) and that V is any bounded open subset of Rn.

1 For all ε > 0, fε ∈ C∞(V) – that is, fε is smooth.
2 The fε’s converge to f in Lp:∫

U

|f− fε|
pdµ →

ε→0
0
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10.5 examples of approximation theorems

3 Suppose that f is also continuous. Then, on every compact subset K ⊂ U, we
have that

sup
x∈K

|f− fε| →
ε→0

0

See Evans and Gariepy’s chapter four for full details on this and a
great deal more. Note: I carefully required f to be in f ∈ Lp(U, R) with
U = Rn to avoid having to worry about the boundary of U. What [12]
has is more general – and there is a lot more to explore there.

Exercise 10.5.1. Prove part 3 of the Theorem 10.5.1 for the case in
which f : R → R. Hint: Use the uniform continuity of f on compact
sets.

10.5.2 Weierstrass Approximation Theorem

Theorem 10.5.2 (Weierstrass Approximation Theorem). Suppose f :

[a,b] → R is continuous. For every ε > 0, there exists a polynomial pf,ε
such that

max
x∈[a,b]

|f(x) − pf,ε(x)| < ε.

Another way to say this is that, using the sup-norm as a metric, the
space of polynomials on [a,b] is dense in the space of continuous
functions on [a,b]:

P([a,b], R) ⊂
dense in sup norm

C([a,b], R)

There is a beautiful generalization of this theorem for functions on com-
pact Hausdorff spaces, the Stone–Weierstrass Theorem. The Wikipedia
page on this topic is good, but my favorite reference is George F. Sim-
mons book An Introduction to Topology and Modern Analysis, [35], an
exquisitely written reference I recommend all students of analysis own
and use.
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In the next section we examine the structure of vector norms on Rn.

10.6 Norms and Symmetric, Convex Subsets in Rn

Definition 10.6.1. A vector norm, or norm | · |, on a vector space X, is a
function that maps vectors to the non-negative real numbers – | · | : X→ [0,∞)

– that satisfies the following conditions.

1 |x| = 0⇔ x = 0

2 |x+ y| 6 |x|+ |y|

3 |αx| = |α| |x| where |α| is the absolute value of α

Remark 10.6.1. We will often use | · | to indicate the usual Euclidean norm
on Rn. Therefore |〈some scalar〉| is often the usual absolute value, because
absolute value is the Euclidean norm on R1. We will sometimes label the
norms with a subscript – e.g. |x|1 ≡

∑n
i=1 |xi|, the 1-norm on Rn (this is not

the Euclidean norm!). But | · | can refer to any norm we happen to be using,
as long as which norm we are using is clear form the context.

Theorem 10.6.1. There is a one to one correspondence between vector norms
on Rn and subsets K ⊂ Rn such that:

1 K is convex
2 0 ∈ K
3 if x ∈ K, then −x ∈ K (i.e. K is symmetric about the origin.)
4 K has non-empty interior in the Euclidean metric (in the metric space induced

by the Euclidean norm).
5 K is compact in the Euclidean metric.

Proof.
Suppose that we have a norm || · || on Rn. Define K ≡ {x | ||x|| 6 1}. We
now prove that K satisfies the 5 conditions in the theorem.
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n

K is Convex : if 0 6 α 6 1 and ||x|| 6 1 and ||y|| 6 1, then by norm
properties 2 and 3,

1 > α||x||+ (1−α)||y||

= ||αx||+ ||(1−α)y||

> ||αx+ (1−α)y||

implying that x,y ∈ K⇒ αx+ (1−α)y ∈ K.
0 ∈ K: By property one of norms ||0|| = 0 < 1.
x ∈ K implies −x ∈ K: ||− 1 · x|| = |− 1| ||x|| = ||x||

The Interior of K is not empty : We prove this in steps:
1 Define e1 = (1, 0, 0, ..., 0), e2 = (0, 1, 0, ..., 0), ... , en = (0, 0, ..., 0, 1)
2 Because, for any x ∈ Rn, x = x1e1 + x2e2 + · · ·+ xnen, we know that

||x|| 6 |x1| ||e1||+ |x2| ||e2||+ · · ·+ |xn| ||en||.

3 Define M = maxi ||ei|| and let x ∈ B(0, 1
nM), the ball of radius 1

nM in
the Euclidean metric (norm).

4 from Step 2, we get that for all x ∈ B(0, 1
nM),

||x|| 6
1

nM
M+ ...

1

nM
M

= n
1

nM
M

= 1

implying that B(0, 1
nM) ⊂ K.

K compact in the Euclidean metric : We use continuity to prove
this.
1 Claim: || · || : Rn → R is continuous in the Euclidean metric.

(a) ||x+ h|| 6 ||x||+ ||h|| and ||x+ h− h|| 6 ||x+ h||+ ||− h|| = ||x+ h||+

||h|| which together give | ||x+ h||− ||x|| | 6 ||h||.
(b) Now suppose that h ∈ B(x, ε), the Euclidean epsilon ball centered

at x. The previous part proves that ||h|| 6 nMε.
(c) thus

| ||x+ h||− ||x|| | 6 ||h||

6 nM|h|Euclidean.

215



approximations : metrics , norms , and convergence

(d) Thus, || · || is continuous in the Euclidean metric.
2 This immediately gives us that K = || · ||−1([0, 1]) is closed in the

Euclidean norm.
3 Now we show that K is bounded

(a) Because ∂B(0, 1) is compact (in the Euclidean norm), 0 6∈ ∂B(0, 1)
and || · || is continuous by Step 1, we have

m ≡ minx∈∂B(0,1)||x|| > 0.

(b) Now Define Km = {x | ||x|| 6 m}.
(c) By the previous line and the fact that ||αx|| = α||x|| for all 0 < α,

we have that Km ⊂ B̄(0, 1).
(d) This implies that K ⊂ B̄(0, 1m) and so K is bounded in the Eu-

clidean metric.
We conclude that K is compact in the Euclidean metric.

Now suppose that K satisfies the 5 properties in the theorem. You
are asked, in the next exercise, to show that ||x||K ≡ 1

k(x) where k(x) ≡
max{α > 0 | αx ∈ K}, is a norm. This concludes the proof!

Exercise 10.6.1. Show that ||x||K ≡ 1
k(x) where k(x) ≡ max{α > 0 | αx ∈

K}, is a norm.

Hints for analytic approach: In Steps ...
1 The only difficult piece is showing that ||x+ y||K 6 ||x||K + ||y||K, so

begin by showing that (a) ||x||K = 0⇔ x = 0 and (b) ||αx||K = |α| ||x||

2 choose β > 0 and µ > 0 so that ||βx||K = 1 and ||µy||K = 1

3 Now use the fact that K is convex to play with

||αβx+ (1−α)µy||K

4 Further hints ...
5 the facts that ||βx||K = 1 and ||µy||K = 1 and αβx+ (1 − α)µy ∈ K

(prove these facts!) implies that

||αβx+ (1−α)µy||K 6 1 = α||βx||K + (1−α)||µy||K

= αβ||x||K + (1−α)µ||y||K

216



10.7 diversity in convergence

6 Now choose α such that αβ = (1 − α)µ and use this to get that
||x+ y||K 6 ||x||K + ||y||K.

Hints for geometric approach: In Steps ...
1 Again, the only difficult piece is showing that ||x+y||K 6 ||x||K+ ||y||K,

so begin by showing that (a) ||x||K = 0 ⇔ x = 0 and (b) ||αx||K =

|α| ||x||K.
2 The approach is to show that the epigraph of || · ||K : Rn → R is

convex by finding supporting hyperplanes for every point in the
graph of || · ||K.

3 Since K is convex and has a nonempty interior, show that for any
point k ∈ ∂K, the supporting hyperplane at k, Hk generates a sup-
porting hyperplane for the graph of || · ||K in Rn+1 when combined
with the vector (k, 1) ∈ Rn+1. I.e. span(Hk, (k, 1)) is a supporting
hyperplane of the graph of || · ||K in Rn+1.

4 Because this proves that || · ||K is a convex function, it immediately
follows that ||12x+

1
2y||K 6 1

2 ||x||K + 1
2 ||y||K from which the desired

result follows!

Exercise 10.6.2. Use the theorem to prove that for any two vector
norms on Rn, | · |a and | · |b, we have that there are constants 0 < c <
C <∞ such that

c| · |b 6 | · |a 6 C| · |b
which implies that the open sets induced by the norms are the same
and convergence in one metric is the same as convergence in the other:

{|x∗ − xi|a → 0}⇔ {|x∗ − xi|b → 0}.

Note: This result is not true when we are working in infinite dimen-
sional spaces and is a source for many interesting nuances in functional
analysis – the study of infinite dimensional spaces of functions.

10.7 The Many Ways of Measuring Convergence

As mentioned in exercise 10.6.2, different metrics (often, these are
vector space norms), on a fixed space X, can lead to distinct notions
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of convergence when the space is not finite dimensional. That is, if
{xi}
∞
i=1 ⊂ X, x∗ ∈ X, and two different space-norm combinations, (X,

| · |a) (X, | · |b), we can have that

{|x∗ − xi|a → 0} 6⇔ {|x∗ − xi|b → 0}

Exercise 10.7.1. Consider the space of functions f : [0, 1] → R with
norms

|f|1 ≡
∫
[0,1]

|f|dµ and |f|2 ≡
(∫

[0,1]
|f|2dµ

) 1
2

Define f∗ ≡ 0 and fi ≡
√
2
4i

1

x
1
2
− 1
4i

. Show that:

1 |f∗ − fi|1 →
i→∞

0

2 |f∗ − fi|2 = 1 ∀i

In the case when X is the space of functions F : Rn → R with some
norm | · |X and a measure µ that measures Rn, i.e. µ(E) is the size of
E ⊂ Rn, we have a variety of commonly used measures of convergence.
Reminder: | · | is the Euclidean norm on Rn, unless otherwise specified
or implied by the context. In the case of n = 1, the Euclidean norm is
the usual absolute value function.

Norm Convergence : We say that {fi}∞i=1 ⊂ F converges in norm to
f∗ ∈ F if

|f∗ − fi|X →
i→∞

0.

Pointwise Convergence : We say that {fi}∞i=1 ⊂ F converges point-
wise to f∗ ∈ F if, for every x ∈ Rn,

|f∗(x) − fi(x)| →
i→∞

0.

Convergence in Measure : We say that {fi}
∞
i=1 ⊂ F converges in

measure to f∗ ∈ F if, for all α > 0,

µ({x | |f∗(x) − fi(x)| > α}) →
i→∞

0.
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Weak Convergence : Suppose that F ≡ {f |
∫

Rn |f(x)|dµ < ∞}, and
that {fi}∞i=1 ∪ {f∗} ⊂ F. Then we say that {fi}∞i=1 converges weakly to f∗ if∫

Rn
fiφdµ →

i→∞

∫
Rn
f∗φdu

for every compactly supported φ ∈ C∞(Rn; R).

At this point, simple awareness of these different measures of conver-
gence is the goal – more exposure, deeper exposure will come later in
the book. Here is an exercise to begin the exploration of these ideas:

Exercise 10.7.2. For each part of this exercise, find a sequence of
functions {fi}

∞
i=1, fi : [0, 1] ⊂ R→ R, such that:

1 |fi|X ≡
∫
[0,1] |fi|dx →i→∞∞ but {fi}∞i=1 converges pointwise f∗ ≡ 0.

2 {fi}
∞
i=1 converges in norm to f∗ ≡ 0, but {fi}

∞
i=1 does not converge

pointwise to f∗ ≡ 0 anywhere: I.e.

∀ x ∈ [0, 1], |f∗(x) − fi(x)| 6→
i→∞

0.
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11
Derivatives :

A Path into Geometric Analysis

11.1 The Derivative

Definition 11.1.1 (Derivative). Suppose that X and Y are normed vector
spaces, with norms | · |X and | · |Y , and f : X→ Y. Then we say that f has the
derivative Dxf ≡ A at x ∈ X, if there is a linear operator A : X → Y such
that:

f(x+ h) − f(x) = A(h) +w(h)

where
|w(h)|Y
|h|X

→
|h|X→0

0.

We will usually suppress the X and Y on the norms so that the last
condition becomes

|w(h)|

|h|
→

|h|→0
0

where we understand from the context that the norm is the correct
one for the vector it is measuring. I.e. since w(h) ∈ Y, then |w(h)| must
actually be |w(h)|Y .

In a nutshell: a function f is differentiable at x, if it is arbitrarily well
approximated by a fixed linear transformation near x.

For any w(h) satisfying this last condition, we say “w(h) is in o(h)”,
which read literally as “w(h) is in little o of h”. Here is a reminder of
that definition (which we first saw on page 159).

Definition 11.1.2 (little o of h, o(h)). We say f(h) = g(h) + o(h) if
|f(h)−g(h)|

|h| → 0 as h→ 0. o(h) is pronounced “little o of h”.
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11.2 Variational Derivative for
∫
Ω∇u · ∇u dx

Suppose that

1 For any twice differentiable u : Ω ⊂ Rn → R we define the operator:

F(u) ≡
∫
Ω

∇u · ∇u dx

2 and we consider a perturbation to u, h : Ω ⊂ Rn → R and h|∂Ω = 0.
(Think of this as a direction in the function space we want to move
and see how F changes. h|∂Ω = 0 means that h is 0 on the boundary of
the domain Ω.)

3 We also recall that in this function space |h| = (
∫
Ω h

2 dx)
1
2 .

4 Now we restrict ourselves to h’s of the form h = αhg where |g| = 1

and αh is some real number. (Notice that this is really no restriction
since for any h, we can define αh ≡ |h|, note that | h

|h| | = 1 and get that
h = αh

h
|h| .)

We want to show that the mapping h→
∫
Ω ∆u h dx is a linear approx-

imation to the derivative of F at u. That is, that it is the derivative
operator for F at u.

Recalling the definition of derivative as the linear operator Lu (if it
exists) that satisfies:

F(u+ h) − F(u) = Lu(h) + r(h)
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where |r(h)|
|h| → 0 as |h| → 0, we begin computing and rearranging

terms:

F(u+ h) − F(u) =

∫
Ω
∇u · ∇u dx+ 2

∫
Ω
∇u · ∇h+

∫
Ω
∇h · ∇h dx−

∫
Ω
∇u · ∇u dx

= 2

∫
Ω
∇u · ∇h+

∫
Ω
∇h · ∇h dx

= 2αh

∫
Ω
∇u · ∇g+α2h

∫
Ω
∇g · ∇g dx (using 4)

= −2

∫
Ω
∆u (αhg) +α

2
h

∫
Ω
∇g · ∇g dx (Divergence Theorem)

= −2

∫
Ω
∆u h+α2h

∫
Ω
∇g · ∇g dx

where the note “(Divergence Theorem)” indicates we have used the
vector calculus version of integration by parts (which uses the diver-
gence theorem) for that step. To see this, notice that by the divergence
theorem, we get ∫

Ω

∇ · (g∇u) dx =
∫
∂Ω

(g∇u) · ~n dσ

where ~n is the outward normal vector to ∂Ω, and since g = 0 on ∂Ω,
we get that the right hand side is 0. That is∫

Ω

∇ · (g∇u) = 0.

Evaluating the left hand side in a different way, we get:∫
Ω

∇ · (g∇u) dx =

∫
Ω

∇g · ∇u+ g(∇ ·∇u) dx

=

∫
Ω

∇g · ∇u+ g∆u dx.

which, combining the two different evaluations of the left hand side,
gives us ∫

Ω

∇g · ∇u dx = −

∫
Ω

g∆u dx.

Restating where we are:

223



derivatives : a path into geometric analysis

F(u+ h) − F(u) = −2

∫
Ω

∆u h+α2h

∫
Ω

∇g · ∇g dx

we first recognize that

−2

∫
Ω

∆u h dx

is linear in h so we define

Lu(h) ≡ −2

∫
Ω

∆u h dx

which lets us conclude that:

F(u+ h) − F(u) = Lu(h) +α
2
h

∫
Ω

∇g · ∇g dx.

Using the fact that αh = |h|, we define

r(h) ≡ |h|2
∫
Ω

∇
(
h

|h|

)
· ∇
(
h

|h|

)
dx

= α2h

∫
Ω

∇g · ∇g dx

and we get that

F(u + h) − F(u) = Lu(h) + r(h).

All we need to do now is show that r(h) ∼ o(h) and we are done.

|r(h)|

|h|
=

|α2h
∫
Ω∇g · ∇g dx|

|h|

=
|α2h
∫
Ω∇g · ∇g dx|
αh

= αh

∣∣∣∣∫
Ω

∇g · ∇g dx
∣∣∣∣

= |h|

∣∣∣∣∫
Ω

∇g · ∇g dx
∣∣∣∣

→ 0 (as |h|→ 0)
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11.2 variational derivatives

Note that when we fixed g and varied αh in order to change h, this
resulted in us using αh → 0 to get |h| → 0. And in doing this, we
chose one, 1-dimensional path to 0. (That is, we ended up calculating
a directional derivative.) We note though, that the derivative at u,
depends only on u, not the perturbation. And that in fact, we are
assuming u and h live in the normed space with norm given by

|w|∗ ≡
(∫
Ω

|w(x)|2 dx+

∫
Ω

|∇w(x)|2 dx+
∫
Ω

|∆w(x)|2 dx

) 1
2

for any function w : Ω ⊂ Rn → R.

Exercise 11.2.1. Show that if

1 we define Lu as before,
2 use this new norm, | · |∗
3 recall that we just calculated:

F(u+ h) − F(u) =

∫
Ω

∇u · ∇u dx+ 2
∫
Ω

∇u · ∇h dx+
∫
Ω

∇h · ∇h dx−
∫
Ω

∇u · ∇u dx

= 2

∫
Ω

∇u · ∇h dx+
∫
Ω

∇h · ∇h dx

= −2

∫
Ω

∆u h+

∫
Ω

∇h · ∇h dx

= Lu(h) +

∫
Ω

∇h · ∇h dx

4 and define r(h) ≡
∫
Ω∇h · ∇h dx,

we can conclude that

1 F(u+ h) − F(u) = Lu(h) + r(h) and
2 |r(h)|∗ < |h|2∗ i.e. r(h) ∼ o(h).

The point of this exercise is that using a harder to understand norm,
leads to an easier proof of a nicer limit (the limit is path independent,
whereas the first limit we found was actually a directional derivative).

225



derivatives : a path into geometric analysis

11.3 Jacobian Matrices

We know (by definition) that f is differentiable at x if there is an Lx
such that:

f(x+ h) − f(x) = Lx(h) + r(h)

where

1 f : Rn → Rm,
2 r(h) ∼ o(h) and
3 Lx : Rn → Rm is a linear function.

A practically important question is “How do we compute Lx from
f(x)?”

Answer: Lx is the matrix of partial derivatives of f:

Dxf = Lx = ∂xf =


∂x1f1 ∂x2f1 · · · ∂xnf1

∂x1f2 ∂x2f2 · · · ∂xnf2
...

...
...

∂x1fm ∂x2fm · · · ∂xnfm



How we go about showing this is true: We will first show that (1) if
there is a linear function Lx such that f(x+h) − f(x) − Lx(h) ∼ o(h) – i.e.
f is differentiable at x, Lx must be the matrix of partial derivatives of f
at x, and then we show that (2) if f has continuous partial derivatives,
then f is differentiable.
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11.3 jacobian matrices

11.3.1 If f is differentiable, then the derivative is the matrix of partial
derivatives,

We will show this in the case that n = m = 2 and note that the proof
in the case of general n and m is completely analogous. In that case,
the equation for the derivative is given by:[
f1(x1 + h1, x2 + h2)
f2(x1 + h1, x2 + h2)

]
−

[
f1(x1, x2)
f2(x1, x2)

]
=

[
a b

c d

][
h1

h2

]
+

[
r1(h)

r2(h)

]

where we have used a completely general form for the derivative
matrix: [

a b

c d

]
.

Notice first that this is really two equations:

f1(x1 + h1, x2 + h2) − f1(x1, x2) = ah1 + bh2 + r1(h)

and
f2(x1 + h1, x2 + h2) − f2(x1, x2) = ch1 + dh2 + r2(h)

and that each equation is true for all h. Suppose we set h2 = 0. This
gives us that:

f1(x1 + h1, x2) − f1(x1, x2) = ah1 + r1((h1, 0))

and if we divide by h1, we get:

f1(x1 + h1, x2) − f1(x1, x2)
h1

− a =
r1((h1, 0))

h1
(16)

6
|r1((h1, 0))|

|h1|
(17)

=
|r1(h)|

|h|
(18)

→ 0 (as |h|→ 0 ). (19)

But this is just saying that

(∂x1f1)(x) = a
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i.e. ∂x1f1 evaluated at x equals a. We will suppress the point at which
we are evaluating the partial derivative if it is clear from the context
where that point is.

Now setting h1 = 0, we get

f1(x1, x2 + h2) − f1(x1, x2)
h2

− b =
r1((0,h2))

h2
(20)

6
|r1((0,h2))|

|h2|
(21)

=
|r1(h)|

|h|
(22)

→ 0 (as |h|→ 0 ) (23)

and conclude that
(∂x2f1)(x) = a

i.e. ∂x2f1 evaluated at x equals a.

In a completely analogous way, we get that

(∂x1f2)(x) = c

and
(∂x2f2)(x) = d

so that we have: [
a b

c d

]
=

[
∂x1f1 ∂x2f1

∂x1f2 ∂x2f2

]
.

And that is what we set out to show.

11.3.2 If f has continuous partial derivatives, f is differentiable.

The four ingredients we need for this part are:
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1 The mean value theorem in 1 dimension: if f : [a,b] ⊂ R → R and
f is differentiable everywhere in (a,b), then there is a c ∈ (a,b) such
that

f(b) − f(a)

(b− a)
= f ′(c)

which can be rewritten in the equivalent form

f(a+ h) − f(a) = f ′(c) · h

where b− a = h.
2 A function s, bounding the convergence of a collection of functions,

each continuous at x. If
a gj : Rn → R (for j = 1, 2, ...k )
b limy→x gj(y) = gj(x) (for j = 1, 2, ..., k ),

then there is a function s : [0,∞]→ [0,∞] such that:
a s is monotonically increasing: ω1 < ω2 ⇒ s(ω1) 6 s(ω2).
b limω→0 s(ω) = 0

c and
sup

j∈{1,2,...,k}, y∈B(x,ω)

|gj(y) − gj(x)| 6 s(ω)

where B(x,ω) is the ball centered at x with radius ω.
Exercise 11.3.1. Prove that such an s(ω) exists.

3 The realization that we can go from x to x+ h in n dimensions in a
series of n steps that each change only one coordinate:

f(x1 + h1, ... , xn + hn) − f(x1, ..., xn)

step n = f(x1 + h1, ..., xn + hn) − f(x1 + h1, ..., xn−1 + hn−1, xn)

step n-1 + f(x1 + h1, ..., xn−1 + hn−1, xn) − f(x1 + h1, ..., xn−2 + hn−2, xn−1, xn)

step n-2 + f(x1 + h1, ..., xn−2 + hn−2, xn−1, xn) − f(x1 + h1, ..., xn−3 + hn−3, xn−2, ...)

+
...

step 2 + f(x1 + h1, x2 + h2, x3, ..., xn) − f(x1 + h1, x2, x3..., xn)

step 1 + f(x1 + h1, x2, x3, ..., xn) − f(x1, ..., xn)

4 The realization that we only need to prove the assertion for a func-
tion f : Rn → R: because the general case of f : Rn → Rm is just a
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collection of m functions fi : Rn → R. That is, the assertion that there
is an Lx such that:

f(x+ h) − f(x) = Lx(h) + r(h)

where
a f : Rn → Rm,
b r(h) ∼ o(h) and
c Lx : Rn → Rm is a linear function,

is completely equivalent to the assertion that, for i = 1, 2, ...m there is
an Lix such that:

fi(x+ h) − fi(x) = L
i
x(h) + ri(h)

where
a fi : Rn → R,
b ri(h) ∼ o(h) and
c Lix : Rn → R is a linear function.

Now, putting these together, we start by writing what we want to
show: Ingredient (4) implies that what we want to prove is:

f(x1 + h1, ..., xn + hn) − f(x1, ..., xn) = ∂x1f · h1 + ... + ∂xnf · hn + r(h)

= ∇f · ~h+ r(h)

with the constraint that r(h) ∼ o(h) or, equivalently

f(x1 + h1, ..., xn + hn) − f(x1, ..., xn) − (∂x1f · h1 + ... + ∂xnf · hn) = r(h)
(24)

for some r(h) such that r(h) ∼ o(h).

Now, using (3) we get that: the left hand side of the last equation

f(x1 + h1, ..., xn + hn) − f(x1, ..., xn) − (∂x1f · h1 + ... + ∂xnf · hn)
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is the sum of n pieces:

f(x1 + h1, ..., xn + hn) − f(x1, ..., xn) −
(
∂x1f · h1 + ... + ∂xnf · hn

)
= f(x1 + h1, ..., xn + hn) − f(x1 + h1, ..., xn−1 + hn−1, xn) − ∂xnf · hn
+ f(x1 + h1, ..., xn−1 + hn−1, xn) − f(x1 + h1, ..., xn−2 + hn−2, xn−1, xn) − ∂xn−1f · hn−1
+ f(x1 + h1, ..., xn−2 + hn−2, xn−1, xn) − f(x1 + h1, ..., xn−3 + hn−3, xn−2, ...) − ∂xn−2f · hn−2

+
...

+ f(x1 + h1, x2 + h2, x3, ..., xn) − f(x1 + h1, x2, x3..., xn) − ∂x2f · h2
+ f(x1 + h1, x2, x3, ..., xn) − f(x1, ..., xn) − ∂x1f · h1

Now we use (1) to get that the first difference: of each of these n
pieces is exactly equal to the partial derivative evaluated at a point

ĉi ≡ (x1, x2, ..., xi−1, ci, xi+1 + hi+1, ..., xn + hn),

where (xi < ci < xi + hi). That is,

f(x1 + h1, ..., xn + hn) − f(x1 + h1, ..., xn−1 + hn−1, xn) = ∂xnf(ĉn) · hn
f(x1 + h1, ..., xn−1 + hn−1, xn) − f(x1 + h1, ..., xn−2 + hn−2, xn−1, xn) = ∂xn−1f(ĉn−1) · hn−1

f(x1 + h1, ..., xn−2 + hn−2, xn−1, xn) − f(x1 + h1, ..., xn−3 + hn−3, xn−2, ...) = ∂xn−2f(ĉn−2) · hn−2
...

f(x1 + h1, x2 + h2, x3, ..., xn) − f(x1 + h1, x2, x3..., xn) = ∂x2f(ĉ2) · h2
f(x1 + h1, x2, x3, ..., xn) − f(x1, ..., xn) = ∂x1f(ĉ1) · h1

this then allows us to write the left hand side of Equation (24) as

(∂x1f(ĉ1) · h1 − ∂x1f(x) · h1)
+ (∂x2f(ĉ2) · h2 − ∂x2f(x) · h2)

...

+ (∂xnf(ĉn) · hn − ∂xnf(x) · hn)

231



derivatives : a path into geometric analysis

or equivalently as

(∂x1f(ĉ1) − ∂x1f(x)) · h1
+ (∂x2f(ĉ2) − ∂x2f(x)) · h2

...

+ (∂xnf(ĉn) − ∂xnf(x)) · hn.

But we are assuming that each of the partial derivatives are contin-
uous at x, so by (2) we have that there is a function s : [0,∞]→ [0,∞]

such that s(|h|)→ 0 when |h|→ 0 and

|∂xif(ĉi) − ∂xif(x)| 6 s(|h|)

due to the fact that, for all i,

|ĉi − x| 6 |h|.

Now, noting that for all i, |hi| 6 |h|, allows us:, finally, to compute a
bound for the left hand side of Equation (24):

f(x1 + h1, ..., xn + hn) − f(x1, ..., xn) − (∂x1f · h1 + ... + ∂xnf · hn)
= (∂x1f(ĉ1) − ∂x1f(x)) · h1
+ (∂x2f(ĉ2) − ∂x2f(x)) · h2

...

+ (∂xnf(ĉn) − ∂xnf(x)) · hn
6 s(|h|) · |h1|+ s(|h|) · |h2|+ ... + s(|h|) · |hn|
6 n s(|h|)|h|.

This implies that
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|r(h)| ≡ |f(x1 + h1, ..., xn + hn) − f(x1, ..., xn) − (∂x1f · h1 + ... + ∂xnf · hn) |
6 n s(|h|)|h|

which implies that

|r(h)|

|h|
6 n s(|h|)

→ 0 (as |h|→ 0)

which means that
r(h) ∼ o(h)

and that concludes our proof that f ∈ C1 implies f is differentiable
(i.e. there are linear approximations when f is C1).

11.3.3 Some More Exercises

Note: exercises are not always directly related to what has just been
covered. They are meant to encourage exploration and discovery in
the same general vicinity as what we are covering, but you should
not necessarily try to see some close connection to the section we just
studied. In this case, none of these problems are about derivatives of
functions from Rn to Rm. Nevertheless, these exercises do give you a
facility that is very useful in your quest for mastery of (a non-boring
version) of analysis.

Exercise 11.3.2. Find a function f : R→ R that is

1 discontinuous everywhere except at x = 0
2 is not only continuous at x = 0 but is actually also differentiable x = 0.

Hint: use the region between the graphs of f(x) = x2 and f(x) = −x2

to guide your thinking.
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Exercise 11.3.3. (Challenge) Find a function f : [0, 1] ⊂ R→ [0, 1] that
is:

1 Monotonically increasing
2 Discontinuous at every rational point in (0,1)
3 Continuous at every irrational point in (0,1).

Hints: (a) enumerate the rationals in Q∩ (0, 1) to get q1,q2, ... and (b)
notice that

∑∞
i=1

1
2i

= 1.

Exercise 11.3.4. Suppose that f : R→ R and that f is differentiable at
x = a.

1 Show that, given an angle θ, we can choose δ(θ) > 0 small enough so
that for all x such that |x− a| < δ(θ) we have that the graph of f(x) lies
inside of the cone with angle θ around the tangent line. (See Figure
57.)

2 Can you find explicit formulas for δ(θ) for the function f(x) = c1x2 +
c2x+ c3 for any arbitrary a?

Following the hints below is merely one path to solution, a path I
happen to like, but it is probably not the easiest way to solve the
problem. You should explore for yourself and find your own path or
follow the path of the hints if it looks interesting to you. Hints: (a) First
solve for g(h) = f(a+h)− f(a)− La(h) where, of course La(h) = f ′(a)h.
(b) Prove that a triangle that is obtained by a base of length h and a
constant (horizontal, in the figure) height of L has maximal apex angle
when the base is bisected (alternatively, the apical angle is bisected)
by the x-axis. (See Figure 58.) (One way to do that is show that the
maximal area underneath the curve y =

d(arctan(x))
dx = 1

1+x2
, over an

interval of length h is obtained when that interval is centered on the
origin.) (c) See Exercises 11.3.6 to 11.3.8 for help in using the idea in
Figure 58 to solve the problem.
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f(a) + La(h)

y

x = a+ h
a

f(a)

y = f(a) + La(h) + εh

y = f(a) + La(h) − εh

2θ2δ(θ)

y = f(x) = f(a) + La(h) + g(h)

Figure 57: (For Exercise 11.3.4): Here is a picture to stimulate your
thoughts and explorations. La(h) is a linear function from R to R – a
line through the origin.

θ1

θ2h

h

L

Figure 58: (For Exercise 11.3.4): A triangle whose height (sideways
height in this picture) is L and base is a constant h has a maximal angle
at the apex (the point furthest to the left) when that apex is bisected
by the x-axis. I.e. You are trying to show that θ2 > θ1.
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Definition 11.3.1 (Defintion of Lipschitz – Reminder). If f : E ⊂ X→ Y

and

|f(x2) − f(x1)| 6 C |x1 − x2|

for all x1, x2 ∈ E and some 0 6 C <∞ then we say f is Lipschitz continu-
ous or simply Lipschitz, with Lipschitz constant C.

Exercise 11.3.5. (Challenge) Suppose that, f ′′(a), the second derivative
of f : R→ R at x = a, exists. Show that there is some interval around
a, [a− δ,a+ δ] on which f is Lipschitz. Hints: first show that in some
interval (a− 2δ,a+ 2δ), the derivative exists and is bounded. Then, for
every point in that interval, deduce that there is a narrow cone that
works for a possibly tiny interval around it. Get a finite open cover
of [a− δ,a+ δ] using those small intervals and deduce the desired
conclusion.

The next three exercises are inspired by Exercise 11.3.4.

Exercise 11.3.6. Suppose that f(x) > 0 is continuous for all x and we
define A(d, x∗) =

∫x∗+d
x∗ f(x)dx. Show that:

1 A(d, x∗), as a function of x∗, is just the area under the curve over a
the fixed length interval [x∗, x∗ + d] that slides along the x-axis as we
change x∗.

2

dA(d, x)
dx

= f(x+ d) − f(x).

Exercise 11.3.7. Use the results of Exercise 11.3.6 to show that if we
define:

θd−(x) ≡ arctan(x) − arctan(x− d)

θd+(x) ≡ arctan(x+ d) − arctan(x)
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and remember that

arctan(x) =
∫x
0

1

1+ s2
ds

we can conclude that
θd+(x) 6 θ

d
−(x)

for all x > 0.

Exercise 11.3.8. Continue with Exercise 11.3.7, again using the results
of Exercise 11.3.6 to prove that

θd+(−d/2) > θ
d
+(x) ∀x.

11.4 Derivatives and Intersections

Here are three exercises to get us started.

11.4.1 Warm up Exercises

Exercise 11.4.1. (Without Hints = Challenge) Suppose that we denote
the number of points in a set E by |E| and we have that

1 f : [0, 1]→ R is differentiable everywhere,
2 Xc ≡ {x | f(x) = c}, and
3 |dfdx(y)| > 0 for all y ∈ Xc.

Prove: that |Xc| is finite.
Hint: use (1) an assumption that all derivatives are non-zero and
|Xc| =∞ (in an effort to get a contradiction) , (2) the compactness of
[0,1], (3) the continuity of f, (4) the cone property you have been asked
to prove in part 1 of Exercise (11.3.4) .
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Exercise 11.4.2. Again, suppose that we denote the number of points
in a set E by |E| and we have that

1 f : [0, 1]→ R is differentiable everywhere,
2

∣∣{x | dfdx(x) = 0}∣∣ <∞
3 Xc ≡ {x | f(x) = c}.

Prove: that |Xc| is finite. Hint: Suppose that N ≡
∣∣{x | dfdx(x) = 0}∣∣ and

that |Xc| > N+ 2. Find a contradiction using the mean value theorem.
(See page 229 for a reminder of the mean value theorem.)

Exercise 11.4.3. (Challenge) Let’s see if we can bound the number of
points in |Xc|:

1 f : [0, 1]→ R is in fact twice differentiable everywhere, i.e. f ∈ C2,
2

∣∣∣d2fdx2 ∣∣∣ < β,

3 |dfdx(y)| > α > 0 for all y ∈ Xc.
4 Xc ≡ {x | f(x) = c}, and

Prove: that |Xc| 6 1
2α
β

= β
2α . Hint: what if f(x) = 1

2βx
2?

11.4.2 The Theory

Now we look a little more deeply at level sets on which the derivative
is non-zero. We begin with three definitions.

Recall from the chapter on metric spaces, that we define f−1(A) ≡
{x | f(x) ∈ A ⊂ Y} and we refer to f−1(A) as the “inverse image of A
under f”, even if there is no function such that g(y) = f−1(y) for all
y ∈ Y, i.e. even if f is not invertible.
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Definition 11.4.1 (Level Sets). A level set of f : E ⊂ X → Y is any set of
the form Xc ≡ {x | f(x) = c ∈ Y}. The set Xc is sometimes called the c-level
set of f and is also denoted by f−1(c), the inverse image, under f, of the point
c ∈ Y.

Definition 11.4.2 (Regular Level Sets for Functions f : E ⊂ R → R).
A level set of a function f : R→ R, Xc ≡ {x | f(x) = c}, is called a regular
level set if, for every y ∈ Xc there exists an open interval (y− δy,y+ δy)
with δy > 0 such that (y− δy,y+ δy)∩Xc = {y}.

Definition 11.4.3 (Regular Values: f : E ⊂ R → R). Suppose that
f : E ⊂ R→ R and that Xc ≡ {x | f(x) = c}. If every derivative on the level
set is non-zero: I.e. y ∈ Xc ⇒ |dfdx(y)| 6= 0, we say that c is a regular value
of f.

You have now seen, in the exercises, that if c is a regular value, the Xc
is a regular level set. That is, you know that:

Theorem 11.4.1 (Regular Level Sets). Level sets defined by regular values
are regular.

How much does this generalize? Is this true in higher dimensions?
The answer is that this is true much more generally. In the next section,
I outline the entire course and how this question and similar ones are
actually central to what we will explore and learn.

Now we give the generalizations to the case in which the spaces X and
Y in Definition (11.4.1) are given by X = Rn and Y = Rm.

Definition 11.4.4 (Regular Level Sets for Functions f : E ⊂ Rn → Rm).
Define k ≡ max(n −m, 0). A level set of a function f : Rn → Rm,
Xc ≡ {x | f(x) = c}, is called a regular level set if, for every y ∈ Xc
there exists an open ball B(y, ε), centered at y with radius ε, such that
B(y, ε) ∩ Xc is well approximated by B(y, ε) ∩ {y+ Vy} ∩ E where Vy is a
k-dimensional subspace of Rn. (Well approximated means that there is a

239



derivatives : a path into geometric analysis

smooth change of coordinates, converging to the identity map as ε → 0,
mapping these two sets bijectively onto each other.)

Definition 11.4.5 (Regular Values: f : E ⊂ Rn → Rm). Suppose that
f : E ⊂ Rn → Rm and that Xc ≡ {x | f(x) = c}. If every derivative on the
level set is full rank: I.e. y ∈ Xc ⇒ rank(Dyf) = min(m,n), we say that c
is a regular value of f. In that case, for all y ∈ Xc, the Vy in definition
(11.4.4) equals Dyf(0)−1.

Exercise 11.4.4. See if you can show that Definitions (11.4.2) and
(11.4.3) are special cases of Definitions (11.4.4) and (11.4.5).

11.5 Three Integrals of Derivatives

We begin with a very simple smooth function f : [0, 1] → [0, 1] (see
Figure 59) which we probe with three integrals, the generalizations

0 1x-axis

y = f(x)

y-axis

0

1

ŷ

Figure 59: The level set Xŷ has 7 elements, shown as 7 blue dots in
this figure. The same figure can be used to illustrate each of the three
integrals.

of which turn out to be deeply important tools for nonlinear, geo-
metric analysis ...
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Degree Theor y∫1
0

∑
x∈Xy

sign(
df

dx
(x)) dy = oriented length of f([0,1]) with cancellation

→ special case of degree theory

→ will bring up Sard’s Theorem for us

Remark 11.5.1. The integral immediately above need only be over the set
f([0, 1]) but because f([0, 1]) ⊂ [0, 1], integrating from 0 to 1 works.

Area/Coarea∫1
0

∣∣∣∣dfdx(x)
∣∣∣∣ dx = length of f([0,1]) with multiplicities

→ special case of area and coarea formulas

Stokes Theorem∫1
0

df

dx
(x) dx = f(1) − f(0) = oriented length of f([0,1]) with cancellation

→ simple case of divergence theorem

→ which is itself a simple case of Stokes Theorem

The first integral gets us thinking about regular values and regular
level sets which leads to a bunch of cool stuff:

Regular Values of Mappings Rn → Rm

rank(Dyf) = min(n,m) ∀ y ∈ Xc
→ Sard’s Theorem also comes up

→ Which brings up the 5R covering theorem

→ Which becomes a good place to begin looking at outer measures
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Regular Level sets Rn → Rm

(B(y, ε)∩ {y+ Vy}∩ E) ∼ (B(y, ε)∩Xc) ∀ y ∈ Xc
→ Really the same idea as Derivative = linear approximation

→ Introduces Manifolds

Regular Value implies Regular level set Rn → Rm

(
B(y, ε)∩ {y+Dyf−1(0)}∩ E

)
∼ (B(y, ε)∩Xc) ∀ y ∈ Xc

→ Level sets corresponding to Regular values = manifolds

The second integral formula introduces the area and coarea formu-
las. These generalize to rather wild functions and sets. The third is
a special (and very simple) case of Stokes Theorem.

Area/Coarea For mulas: f : Rn → Rm∫
Ω

g(x)J∗fdx =

∫
f(Ω)

(∫
f−1(w)

g(x)dHmax(n−m,0)(x)

)
dHmin(n.m)(w)

... where the Jacobian J∗f ≡

{ √
Dft ◦Df n < m√
Df ◦Dft n > m

→ a very powerful general tool for tracking and computing mapped volumes

→ We encounter outer measures and Hausdorff measures in earnest here!

Stokes Theorem – Briefly∫
∂Ω

ω =

∫
Ω

dω (Stokes Theorem)

→
∫
∂Ω

v · ~n dσ =

∫
Ω

∇ · v dx (Divergence Theorem)

→
∮
∂Ω

~v · T∂Ω =

∫
Ω

∇×~v dx (Little Stokes Theorem)
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Remark 11.5.2. In the statement of the general Stokes Theorem immediately
above, ω is an n-1 form, dω is the exterior derivative of ω and is therefore
an n form. For the definitions of forms, exterior derivatives and integration
of forms, see Chapter 7 of Fleming [14].

We will return to these three integrals later in the text.

11.6 Taylor Series

There are three approaches to proving different version of Taylor series
approximations. Two use the mean value theorem and the third, the
definition of derivative.

11.6.1 Mean Value Theorem Approach I

We first use the mean value theorem in a very straightforward way to
get Taylor Series approximations to a function. In this approach we
assume that f ∈ Cn+1 and conclude that

f(x+ h) −

n∑
k=0

fk(x)
hk

k!
= fn+1(c(h))

hn+1

(n+ 1)!

for some c(h) between x and x+ h.

We begin by demonstrating how it goes when n = 1.

1 Begin with the Mean Value Theorem:

g(x+ h) − g(x) = g ′(c)h (for some c ∈ (x, x+ h) or (x+ h, x)) .

(We will assume that h > 0 and note that everything works when h < 0
too. But you should convince yourself this is true!)

2 Apply this to g(x) = f ′(x) and assume f ∈ C2 and conclude that

f ′(x+ h) − f ′(x) = f ′′(c(h))h (for some c ∈ (x, x+ h)) .
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3 Integrate this to get:∫h
0

f ′(x+ t) dt−

∫h
0

f ′(x) dt =

∫h
0

f ′′(c(t))t dt (25)

→ f(x+ h) − f(x) − f ′(x)h =

∫h
0

f ′′(c(t))t dt. (26)

4 Define

f ′′m = min
s∈[x,x+h]

f ′′(s)

f ′′M = max
s∈[x,x+h]

f ′′(s).

5 Because x < c(t) < x+ t 6 x+ h, we get that∫h
0

f ′′m t dt 6
∫h
0

f ′′(c(t)) t dt 6
∫h
0

f ′′M t dt

f ′′m
h2

2
6
∫h
0

f ′′(c(t))t dt 6 f ′′M
h2

2
.

6 Now define Ifh by

Ifh
h2

2
≡
∫h
0

f ′′(c(t)) t dt

to get

f ′′m
h2

2
6 Ifh

h2

2
6 f ′′M

h2

2

which implies
f ′′m 6 Ifh 6 f ′′M.

7 Because f ′′ is continuous on [x, x+ h],the intermediate value theorem
tells us there is a point ĉ ∈ [x, x+ h] such that f ′′(ĉ) = Ifh.

8 We immediately have that Equation (26) can be rewritten:

f(x+ h) − f(x) − f ′(x)h = f ′′(ĉ)
h2

2

= f ′′(ĉ(h))
h2

2
.
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9 In general, we have that

f(x+ h) −

n∑
k=0

fk(x)
hk

k!
= fn+1(c(h))

hn+1

(n+ 1)!

and the proof is completely analogous except that in this case we
assume that f ∈ Cn+1 and begin with

g(x+ h) − g(x) = g ′(c)h

which we apply to g(x) = fn(x) to get

fn(x+ h) − fn(x) = fn+1(c(h))h (for some c(h) ∈ (x, x+ h))

which lets us conclude following our steps, exactly, that

fn−1(x+ h) − fn−1(x) − fn(x)h = fn+1(ĉ(h))
h2

2

which, in turn, leads by steps 2-8 to

fn−2(x+ h) − fn−2(x) − fn−1(x)h− fn(x)
h2

2
= fn+1( ˆ̂c(h))

h3

3!
.

10 We can continue this to the desired conclusion, though we usually just
let c(h) represent the function, mapping into the interval [x, x+h], that
changes from iteration to iteration.

11.6.2 Mean Value Theorem Approach II

Here is a shorter proof following page 386 of Fleming’s book. It
assumes slightly less: we assume only that the function has an (n+1)th
derivative everywhere in the interval [x, x+h], not that it is continuous.

Proof.
Define

G(y) = f(x+ h) − f(y) − f ′(y)(x+ h− y) −
f ′′(y)

2!
(x+ h− y)2

− · · ·− f
(n)(y)

n!
(x+ h− y)n −

K

(n+ 1)!
(x+ h− y)n+1
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with K chosen so that G(x) = 0. Differentiting G, we get that

G ′(y) =
(x+ h− y)n

n!
(−f(n+1)(y) +K)

and from the facts that G(x+ h) = G(x) = 0 and G ′(y) exists 0 the
interval between x and x+ h, we have that there is a c(h) ∈ (x, x+ h)
such that G ′(c(h)) = 0 implying that K = f(n+1)(c(h)).

Now using the fact that G(x) = 0 and K = f(n+1)(c(h)), we get the
Taylor series result

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2!
h2 · · ·+ f

(n)(x)

n!
hn +

f(n+1)(c(h))

(n+ 1)!
hn+1

Exercise 11.6.1. Write out the Taylor series centered at x = 0 for each
of these functions:

1 sin(x)
2 cos(x)
3 tan(x)
4 arcsin(x)
5 arccos(x)
6 arctan(x)
7 ln(x)
8 ex

9 e−x
2

Exercise 11.6.2. How far out in the series for e−100 does one have to
go to be guaranteed to be within 10−6 of the correct answer? That
is, what N makes

∑N
i=0

(−100)i

i! differ from e−100 by no more than
1

1,000,000?

Exercise 11.6.3. Given the differential equation y ′′ − y ′ + y = 0, and
y =

∑∞
i=0 aix

i, find the ai’s and then find the solutions in terms of
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11.6 taylor series

functions studied in Exercise 11.6.1. Confirm these are solutions by
direct differentiation and substitution into the differential equations.

11.6.3 Derivative Definition Approach

Define

Ta,k
f (x) ≡

k∑
i=0

fi(a)
(x− a)k

k!

where fj = {the jth derivative of f} and f0 ≡ f.

In this subsection, we discuss that cool fact that |f(x) − Ta,k
f (x)| =

o(|x−a|k) even if the only thing we know is that fi(x) exists at x = a for
i = 1, 2, ...,k. This is a generalization to higher orders of the statement
that if f is differentiable at a, then f(x)− (f(a)+ f ′(a)(x−a)) = o(|x−a|)

where we only need that f ′ exists at a, in order for the approximation
to be true. Of course we get existence in a neighborhood of a for lower
order derivatives from the existence of higher order derivatives at a.
The source for this theorem is Kennan Smith’s interesting A Primer in
Analysis. (Every analyst should have a copy.)

Theorem 11.6.1. If fi(a) exists for i = 1, 2, ..., k, then |f(x) − Ta,k
f (x)| =

o(|x− a|k) for some interval |x− a| 6 δ.

Proof of Theorem 11.6.1(Challenging).
Suppose that fi(a) exists for i = 1, 2, ..., k. We note that:

1 (Ta,k
f ) ′ = Ta,k−1

f ′ .
2 if k > 2, fk(a) existing, implies that fi exists in a neighborhood of x = a

for i = 1, 2, ...,k−1 and fi is continuous for x in a neighborhood of x = a
for i = 1, 2, ..., k− 2. In particular, if k > 3, then f(x) − f(a) =

∫x
a f
1(t)dt.

3 Now a lemma that we will use more than once in the proof and is
generally useful in other circumstances:
Lemma 11.6.1. if f(x) = o(xk) then

∫x
0 f(y)dy = o(xk+1).
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Proof of Lemma 11.6.1.
Since f(x) = o(xk), f(x) = h(x)xk, where h(x) →

x→0
0. Define h+(x) =

sup
t∈[−x,x]

|h(t)|. Note that h+(x) →
x→0

0 and |h+(x)| > |h(x)| for all x.

Notice that |
∫x
0 h(t)t

kdt| 6 h+(x)
∫x
0 t
kdt =

h+(x)
k |x|k+1. (End: Proof of

Lemma)
4 Using the previous items, if k > 3, then if |f ′(x)−Ta,k−1

f ′ | = o(|x−a|k−1),
we conclude that

∣∣∣∫xa (f ′(t) − Ta,k−1
f ′ (t)

)
dt
∣∣∣ = ∣∣∣f(x) − Ta,k

f (x)
∣∣∣ = o(|x|k).

So the theorem is true for k if it is true for k− 1.
5 We note that the case of k = 1 is just the definition of derivative. We

need only prove the theorem for the case k = 2. Because, in the case
that k = 2, we cannot directly assume that f(x) − f(a) =

∫x
a f
1(t) dt (=∫x

a f
′(t) dt), we have to put a bit more work into this case.

a As noted above, because f2(a) exists, f1(x) = f ′(x) exists in some
neighborhood of a and we have that f ′(x) − f ′(a) − f ′′(a)(x− a) =
h(x− a), where |h(x− a)| ∼ o(|x− a|).

b We also know that in that neighborhood, f ′(x) is bounded, so by
the mean value theorem, f is locally Lipschitz. This implies that
f(b) − f(a) =

∫b
a f
′(x) dx for a and b in that neighborhood.

c Defining g(x) = f(x) − f(a) − f ′(a)(x− a) −
f ′′(a)
2 (x− a)2, we note

that g ′(x) = f ′(x) − f ′(a) − f ′′(a)(x− a) = h(x− a) and

|g(x)| =

∣∣∣∣∫x
a

g ′(y) dy

∣∣∣∣ 6 ∫x
a

|h(y)| dy = o(|x− a|2) ( by Lemma 11.6.1)

Exercise 11.6.4. Give an example of a function that is differentiable at
x = 0, but is not differentiable anywhere else.

Exercise 11.6.5. (Challenge) Find an example of a function f : [0, 1]→
R1 that is both differentiable everywhere and Lipschitz, such that the
derivative is not continuous on a set with positive measure. (I tried
proving this was not possible. That was very hard, for a good reason –
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11.7 degree theory and sard ’s theorem

it is possible!). Hint: Start with the function f(x) = 0 and then mess
with it on E ⊂ [0, 1], dense in [0, 1], with length ε << 1.

11.7 Degree Theory and Sard’s Theorem

Recall the simple 1-dimensional example of degree theory in section
11.5:∫1
0

∑
x∈Xy

sign(
df

dx
(x)) dy = oriented length of f([0,1]) with cancellation

→ special case of degree Theory

→ will bring up Sard’s Theorem for us.

In this section, we prove that the complement of the set of regular
values has measure 0. Using the ideas we developed in section 11.4
allows us to conclude that for almost all y ∈ [0, 1], the level sets Xy = a
finite set of points. Because integrals ignore sets of measure zero, we
know that this means the above integral is well-defined.

Exercise 11.7.1. As a follow on to the exercises in section 11.4, show
that at regular values y, the sum∑

x∈Xy

sign(
df

dx
(x))

is either −1, 0 or 1.

Exercise 11.7.2. Use the results of the last exercise to conclude that∫1
0

∑
x∈Xy

sign(
df

dx
(x)) dy = f(1) − f(0)

= the oriented length of the image of f([0, 1])
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Theorem 11.7.1 (Sard’s Theorem in R1). Suppose that f : [0, 1] → [0, 1]
and f ′(x) exists for all x ∈ [0, 1]. Define

D0 ⊂ [0, 1] ≡ {x ∈ [0, 1]|f ′(x) = 0}.

Then,
H1(f(D0)) = 0.

That is, the length of the complement of the set of regular values has length
zero.

There are two ways we are going to prove this.

11.7.1 A special case of Sard’s Theorem via the 5R covering theorem

First proof of Theorem 11.7.1:

Proof.
Because f is differentiable, for any ε > 0, we can do the following:

1 Use the cone result (see Exercise 11.3.4) to choose a small enough
δεx > 0 for every x ∈ D0, such that

|f(x) − f(y)| 6 ε|x− y| when y ∈ Ûx ≡ (x− 5δεx, x+ 5δεx).

2 This last step tells us that f maps the Ûx whose lengths are 10δεx, into
(not necessarily onto!) intervals that are no longer than ε10δεx.

3 Now define Ux = (x− δεx, x+ δεx). Notice that DO ⊂ ∪xUx.
4 Now use the 5R theorem (below) to get a countable disjoint sub-

collection of the Ux’s, {Uxi }∞i=1 such that

D0 ⊂
⋃
x∈DO

Ux ⊂
∞⋃
i=1

Ûxi .

5 Now we note that because the {Uxi }
∞
i=1 are disjoint,

∞∑
i=1

H1(Uxi) = H1(

∞⋃
i=1

Uxi) 6 H1([0, 1]) = 1

250



11.7 degree theory and sard ’s theorem

and this implies that
∞∑
i=1

H1(Ûxi) 6 5.

6 Now we compute:

H1(f(D0)) 6
∞∑
i=1

H1(f(Ûxi))

6
∞∑
i=1

εH1(Ûxi)

6 5ε.

7 Because ε was arbitrary, we can conclude that H1(f(D0)) = 0.

Now for the 5R theorem.

Theorem 11.7.2 (5R Covering Theorem). If E is a ball (open or closed)
with center p and radius r, let Ê denote the ball (open or closed) with center
p and radius 5r.

Suppose U = {Uβ}β∈B is a (possibly uncountable) collection of balls in Rn

whose radii are bounded above by C < ∞. Then there exists a countable
subcollection

F = {Uβi }
NB6∞
i=1

such that:

1 Uβi ∩Uβj = ∅ for i 6= j and
2 {Uβ}β∈B ⊂ ∪NB

i=1Ûβi .

Proof.
We break the proof into steps:
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1 We partition the balls into subcollections: {Ek}∞k=1, where

Ek =

{
Uβ

∣∣∣∣ 12kC < radius(Uβ) 6
1

2k−1
C

}
.

2 Now choose a maximal sets of disjoint balls in E1: We use Zorn’s
lemma to get a maximal collection of pairwise disjoint balls in E1:
Zorn’s lemma implies that there exists, F1 a subcollection of balls in
E1 such that (a) every pair of balls {U,W} ∈ F1 are disjoint and (b) if
U ∈ E1 \ F1, then U∩W 6= ∅ for some W ∈ F1.

3 Because Rn is separable (i.e. there is a dense countable subset of Rn),
it follows that F1 is a countable set and can be enumerated.

4 It also follows that ⋃
U∈E1

U ⊂
⋃
U∈F1

Û.

5 Now construct Fi from Ei by (a) first getting rid of all the balls in
Ei that intersect any ball in

⋃i−1
k=1 Fk and then (b) finding a maximal

pairwise disjoint collection of the balls in Ei that are left. It follows
that: ⋃

U∈∪ik=1Ek

U ⊂
⋃

U∈∪ik=1Fk

Û.

6 Define F ≡ ∪∞i=1Fi.
7 By the above construction F is a pairwise disjoint, countable subcollec-

tion of U whose dilation by 5 creates of collection of balls whose union
covers the union of the balls in U.

Exercise 11.7.3. Look up Zorn’s lemma and make sure you understand
how that lemma gives us the maximal subcollections we use.

252



11.7 degree theory and sard ’s theorem

11.7.2 A special case of Sard’s theorem via more smoothness and
compactness

Now we prove Theorem 11.7.1 with the added assumption that f ∈ C1

– not only is f differentiable, the derivative f ′ is continuous as well.

1 Because f ′ : [0, 1] → R is now assumed continuous, we know that
D0 = (f ′)−1(0) is closed since {0} is a closed set. Since it is also
bounded, DO is compact.

2 Now use the cone result (see Exercise 11.3.4) to choose a small enough
δεx > 0 for every x ∈ D0, such that

|f(x) − f(y)| 6 ε|x− y| when y ∈ Ux ≡ (x− δεx, x+ δεx).

3 These open intervals {Ux}x∈D0 coverD0 and so there is a finite subcover
of D0, {Ux1 , ...,UxN }. I.e. we have D0 ⊂

⋃N
i=1Uxi .

4 Without loss of generality, we can assume that x1 < x2 < ... < xN.
5 We can assume also that if one of the Uxi ’s is removed from {Uxi }

N
i=1,

the N− 1 open intervals that remain do not cover D0.
6 We define li and ri by Uxi = (li, ri) = (xi − δ

ε
xi

, xi + δεxi).
7 Because we assume none of the intervals can be left out of the cover,

we can conclude that l1 < l2 < ... < lN and r1 < r2 < ... < rN.
8 Because li+2 < ri would imply that the Uxi+1 is covered by Uxi ∪Uxi+2 ,

we can conclude that every point in ∪Ni=1Uxi is in at most two of the
Uxi ’s, implying that:

N∑
i=1

H1(Uxi) 6 2H
1(∪Ni=1Uxi) 6 2

since
⋃N
i=1Uxi ⊂ [0, 1].

9 Now, as before (except with a 2 instead of a 5), we have

H1(f(D0)) 6
N∑
i=1

H1(f(Uxi))

6
N∑
i=1

εH1(Uxi)

6 2ε.
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10 Because ε was arbitrary, we can conclude that H1(f(D0)) = 0.

Exercise 11.7.4. Convince yourself that the steps (4-8) above are justi-
fied. You should sketch the situation. See Figure (60).

Ux1

Ux2 ...

UxN

Ux3 is redundant

Ux4

Figure 60: Example sketch to get you thinking. Remember that the
intervals are symmetric about the xi’s shown as dots here.

11.7.3 Another exercise

Exercise 11.7.5. Show that the conclusion of Exercises (11.7.1-11.7.2)
need not be correct if f is discontinuous, even if f is differentiable at
every point except the points where it is discontinuous and there are
only a finite number of discontinuities. Show this by showing, for any
α ∈ R, how to construct a function fα : [0, 1]→ [0, 1] for which

α =

∫1
0

∑
x∈Xy

sign(
dfα

dx
(x)) dy.
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11.8 Norms of Operators

Definition 11.8.1 (Operator Norm). Suppose that A : x ∈ B1 → y ∈ B2
where B1 and B2 are linear spaces with norms | · |1 and | · |2, and A is a linear
operator. We define the norm of the operator A to be:

|A| ≡ sup
x∈B(0,1)

|A(x)|2,

or equivalently
|A| ≡ sup

x∈∂B(0,1)
|A(x)|2,

or equivalently

|A| ≡ sup
x∈B1\{0}

|A(x)|2
|x|1

,

where B(0, 1) is the unit ball, centered in the origin in B1, so ∂B(0, 1) is the
boundary of the unit ball, the unit sphere centered on the origin.

11.8.1 Applicaton: Exponentials of Operators

Exercise 11.8.1. Prove that for x ∈ R and |x| < 1,

∞∑
k=0

xk =
1

1− x
.

Recall the definition of the norm of an operator given in Definition
(11.8.1).

Exercise 11.8.2. Suppose that A : Rn → Rn is linear and |A| < 1. Prove
that there is an operator B such that

B = I+A+A2 +A3 +A4 + ...

and that
B = (I−A)−1.
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I.e. B is the inverse of the operator I−A, where I : Rn → Rn is the
identity map.

Hint: show that for any x ∈ Rn, the series

Sk(x) ≡
(
I+A+A2 + ... +Ak

)
(x) = x+Ax+A2x+ ... +Akx

converges to a point in Rn. Now define

B(x) = lim
k→∞

Sk(x).

Now compute (I−A) ∗ Sk(x) and see what happens when k→∞.

Exercise 11.8.3. Now show that

1 for any linear operator A : Rn → Rn,

etA(x) ≡
(
I+ tA+

t2

2!
A2 +

t3

3!
A3 +

t4

4!
A4 + ...+

)
(x)

converges for all x ∈ Rn.
2 Defining:

SkA(t, x) ≡
(
I+ tA+

t2

2!
A2 +

t3

3!
A3 + ... +

tk

k!
Ak
)
(x)

use the fact that you know how to compute dSkA(t,x)
dt to show that it

makes sense to say the solution to:

ẋ(t) = Ax(t)

is x(t) = etAx(0). One main point to notice is that we do not need a
bound on the norm of the operator A.

3 (Challenge) There is a detail here that is non-trivial: how can we show
that

d

dt

(
lim
k→∞

SkA(t, x)
)

= lim
k→∞

(
d

dt
SkA(t, x)

)
?

It turns out that this is true in this case and you can go ahead and
assume it, but see if you can make progress in figuring out what must
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be true to get this switch to work.

Hint: when considering whether or not ddt (limk→∞ fk(t, x)) = limk→∞
(
d
dtfk(t, x)

)
you care about how the rates of convergence of limk→∞ fk(x, t) depend
on t. You can also stare at

lim
h→0

1

h

(
lim
k→∞

fk(x, t+ h) − lim
k→∞

fk(x, t)
)

.

11.9 Using Derivative Approximations

We now use the fact that the derivative approximates the function
locally to (1) get local invertibility and (2) the local parameterization
of level sets. We first look at the simplest possible cases to illustrate
the ideas.

11.9.1 Inverse Function Theorem: f : R→ R

We begin with an example of a function f : R→ R:

Remark 11.9.1. We need the requirement that the derivative is continuous
since it is not too hard to come up with examples of functions that are
differentiable at a point, but not invertible in any neighborhood of that point.
See Figure 62.

11.9.2 Implicit Function Theorem: f : R2 → R

The simplest example of the implicit function theorem is provided by
a function from R2 to R. The assumptions are that the derivative of f
is full rank, which in this case, means that at least one of the partial
derivatives is non-zero. See Figure 63.
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a

(a− δ,a+ δ)

df
dx(a) 6= 0

f((a− δ,a+ δ))

Figure 61: Inverse Function Theorem - A simple, one dimensional
example: if the derivative of f is invertible at a, then, in a small
enough neighborhood of a, (a− δ,a+ δ), the function itself is invertible.
Technical Details: We need to assume that not only is the derivative
at a invertible – in this case that means the slope = {1-by-1 matrix} is
nonzero – we also need the derivative function mapping points in the
domain to their slopes to be continuous at a.
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y

x

y = f(x) given by black curve

tangent line

Envelope for function

Figure 62: An example of a function whose derivative at a point is
invertible but the function is not invertible in any neighborhood of
that point, because the derivative is not continuous.
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f(x,y) = c

fy = 0

fx = 0

y

x

Figure 63: Implicit Function Theorem - simple example: if the deriva-
tive of f is full rank at some point a = (x∗,y∗) in the f = c level set,
then, in a small enough neighborhood of a, then at least one of these
(non-exclusive) cases holds: (Case 1:) There is a function of y, g(y),
and a δ > 0 such that for y ∈ (y∗ − δ,y∗ + δ), f(g(y),y) = c. (This
is true if fx(a) 6= 0.) (Case 2:) There is a function of x, h(x), and a
δ > 0 such that for x ∈ (y∗ − δ,y∗ + δ) f(x,h(x)) = c. (This is true
if fy(a) 6= 0.) Technical Details: While the theorem only needs the
derivative to be full rank at a, if the derivative of f is full rank on the
entire level set, this means that we have local coordinates everywhere,
though sometimes only x or only y will work as local coordinates. The
derivative in our case is ∇f = (fx, fy) and being full rank means there
is at least one nonzero element of this gradient vector. We are also
assuming that the derivative is continuous, as we did in the inverse
function theorem case, because, in fact we use the inverse function
theorem to prove this theorem.
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Remark 11.9.2. Suppose for example, that fx(a) 6= 0. Then locally we can
change the value of the function by changing the value of x: if f(x∗,y∗) = c
and we perturb y, from y∗ to y∗ + ε, we will generally find that f(x∗,y∗ +
ε) = c+ δ but because fx 6= 0, we can just find an η(ε) such that f(x∗ +
η(ε),y∗ + ε) = c. η(ε) will be approximately given by fx(a)η(ε) ≈ −δ or
η(ε) ≈ −δ

fx(a)
.

11.10 Inverse and Implicit Function Theorems

In addition to the full versions of the Inverse and Implicit Function
Theorems, we give an intuitive overview of manifolds which are central
to nonlinear analysis.

11.10.1 Review: Rn and why we like it.

We are all acquainted with R2 and R3. Many of us have worked
extensively with Rn, usually by analogy with R2 and R3. Here are
some familiar properties and things we can do using those properties:

Vector Space : Rn is a vector space with elements of the form x =

(x1, x2, ..., xn).
Inner product : The inner product of x and y, x · y or 〈x, y〉, is given
by
∑n
i=1 xiyi.

Euclidean distance : The length of a vector x is given by

|x| ≡

√√√√ n∑
i=1

x2i =
√
x · x,

so the distance between two points is simply |x − y|.
Angles between vectors : Angles between vectors are given by
cos(θ) = x·y

|x| |y| .
L inear Transformations : A Linear transformation between Rn

and Rm, which is most often represented and computed using matrices
A ∈ Rm×n, makes sense because the Rk is a linear space for all k.
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Calculus : Differentiation also makes sense because of the linear
space structure of Rn. We also use the metric structure to define
volumes and integration.

All this makes life in Rn beautiful. Calculations are easy, shortest
distances between points are straight lines, and our experience with 2

and 3 dimensions, which Rn mimics and extends, makes it all very
accessible, intuitively speaking.

But the subsets of Rn we work with are often curved and contorted.
k-dimensional surfaces are everywhere, from graphs of functions to
parameterized sets in Rn, from level sets of mappings to sets in Rn

that contain all possible samples of some data set we are trying to
model. On top of that, there are spaces of points that we find natural
to use and possess Rk-like properties, yet are not subsets of any Rn.

The structure that comes to our rescue is the k-manifold.

11.10.2 k-Manifolds in Rn are locally like Rk

Definition 11.10.1 (Diffeomorphism). A mapping f : X → Y is a diffeo-
morphism if

(a) f is a continuous bijection with a continous inverse mapping g = f−1

(b) Both f anf g are continuously differentiable.

Often we want to specify the differentiability and we say f is a Ck diffeomor-
phism if f,g ∈ Ck (all k-th order derivatives are continuous).

Definition 11.10.2 (k-manifold in Rn). Define Lk to be the k-dimensional
subspace of Rn defined by holding the last n− k coordinates equal to 0, i.e.
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all points in Rn of the form (x1, x2, ..., xk, 0, ..., 0). A k-dimensional manifold
Mk is a subset that is locally like Rk. At every point x ∈Mk, there is

1 a neighborhood U ⊂ Rn containing x and
2 a diffeomorphism φx : U→W ⊂ Rn

such that

1 W is a neighborhood of 0 in Rn,
2 φx(x) = 0
3 φx(U∩Mk) =W ∩ Lk.

This definition is far from as general as possible, but for our purposes
it will work quite well. In fact, one can take this definition a long ways,
and understanding it thoroughly equips one to work with the other
more general definitions out there.

The idea is that we will want to use the φ’s to enable ourselves to do
calculus on the manifold. Care must be taken, but everything works
out pretty much as one would expect. One tool that is used over and
over is the use of local approximations to the manifolds and mappings
between manifolds. The first is called the tangent space at x, the second
is DxF, the derivative or differential of F at x.

The tangent space of Mk at x is the k-plane Tx that is tangent to Mk

at x. As we zoom into Mk at x, it looks more and more like Tx: this
is really just a higher dimensional analog of the tangent line you are
acquainted with from the idea of derivatives in Calculus 1. To be a bit
more precise,
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Definition 11.10.3 (Tangent Space at x). If Mk is a k-manifold, then Tk
is the unique k-dimensional subspace of Rn such that for every ε > 0 there is
an rε such that for every point y ∈Mk ∩B(x, rε)

||PTx(y− x)|| > (1− ε)||y− x||

where PTx(u) is the orthogonal projection of u onto Tx.

This definition says that given any ε and a sufficiently small ball
around x, the piece of the manifold inside that ball, Mk ∩B(x, rε), lives
in a cone about Tx whose apical half angle is cos−1(1− ε). Thus, by
making ε sufficiently small, the tangent plane approximates Mk as
well, provided we zoom in far enough.

In the next section, we review derivatives as approximations to map-
pings.

11.10.3 Review: Derivatives as linear approximations

Ordinarily, one thinks of derivatives as slopes of tangent lines or even
the limit of the ratio f(x+h)−f(x)

h as h → 0. While this is correct for
maps from R to R, another equivalent definition turns out to be very
useful. First we recall the definition of o(h)

Definition 11.10.4 (Review: little o of h, o(h)). We say f(h) = g(h) +

o(h) if |f(h)−g(h)|
|h| → 0 as h→ 0. o(h) is pronounced “little o of h”.

Now we can define derivatives, approximation style:

Definition 11.10.5 (Review: Derivative of a Map F : Rn → Rm).
Given F : Rn → Rm, we will say that F is differentiable at x ∈ Rn if there is
a linear operator A : Rn → Rm such that

F(x+ h) − F(x) = A(h) + o(h)

We denote this linear operator A by DxF.
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In other words, DxF is the local, linear approximation of (∆xF)(h) =
F(x+ h) − F(x), the change or increment of F at x.

If F(x) = (F1(x), F2(x), ..., Fm(x)) is differentiable, the linear map that
gives us this approximation turns out to be the matrix of partial
derivatives of F:

DxF =


∂F1
∂x1

(x) ∂F1
∂x2

(x) . . . ∂F1
∂xn

(x)

∂F2
∂x1

(x) ∂F2
∂x2

(x) . . . ∂F2
∂xn

(x)
...

...
...

∂Fm
∂x1

(x) ∂Fm
∂x2

(x) . . . ∂Fm
∂xn

(x)



Example 11.10.1 (F : Rn → R). In the case of a function mapping Rn to
the real numbers, we get DxF = ∇F|x: the derivative of F at x is the gradient
of F at x, a row vector made up of the partial derivatives of F.

Remark 11.10.1. The tangent plane of Mk at x can now be expressed quite
simply. If φx is the coordinate map of Mk at x, then Tx + x = D0(φ−1

x )(Lk),
where Lk is defined as in Definition 11.10.2.

When F is differentiable, it is natural to ask, “How differentiable?”

Definition 11.10.6. If the derivative of F exists and is continuous, then we
will say F is C1. When that derivative has a derivative that is continuous, it
is C2. Likewise when F is k-times continuously differentiable, it is Ck.

11.10.4 Review: Full rank maps

Definition 11.10.7 (Full Rank Matrix). Let A be an m×n matrix. Then
A is full rank if any of the following equivalent conditions are true:

1 dimension of the null space of A is max(0,n−m)

2 there are min(m,n) independent columns
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3 there are min(m,n) independent rows.

Remark 11.10.2. If a matrix A is full rank, then a sufficiently small pertur-
bation will not change that fact. I.e. if A = {ai,j}

i=m,j=n
i=1,j=1 is full rank m×n

matrix, there is an ε(A) > 0 such that if E is an m× n matrix such that
maxi,j ei,j < ε(A), then A+ E is also full rank.

Definition 11.10.8 (Level Sets). The level sets of a mapping F : Rn → Rm

are the collection of sets F−1(y) ⊂ Rn for all y ∈ Rm.

Definition 11.10.9 (Full Rank Mapping). A mapping F : Rn → Rm is
full rank on a level set F−1(y), if DxF is full rank for all x ∈ F−1(y).

Define Wy = F−1(y). When DxF is full rank on Wy, properties of the
level sets of the derivative at points in Wy translate into properties of
the nonlinear set Wy.

Definition 11.10.10. When the coordinate diffeomorphisms in the definition
of a k-manifold are of Cp, then we say that the manifold is of class Cp.

Theorem 11.10.1 (Full Rank Theorem). Suppose that F is Cp with p > 1.
When DxF is full rank on Wy = F−1(y), Wy is a Cp, k-manifold in Rn, with
k = max(0,n−m).

The Inverse and Implicit Functions Theorems (general versions in the
next section) are in fact the deeper explanation of this last theorem.

11.10.5 Finally: Inverse and Implicit function theorem in higher dimensions

For smooth maps, the derivative gives us complete local information
about the structure of the level sets of F.

Theorem 11.10.2 (Inverse Function Theorem). Suppose that F : Rn →
Rn, x ∈ Rn, F is Ck, k > 1 and DxF is invertible. Then there is some
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ε > 0 such that F : B(x, ε)→ F(B(x, ε)) is invertible and the inverse function
G : F(B(x, ε))→ B(x, ε) is also Ck.

The basic idea is that when the map is full rank (in this case, the
derivative is invertible) the derivative’s invertibility, the fact that the
derivative approximates the nonlinear function locally, and the fact
that being full rank is stable to small perturbations all translate into
the nonlinear map being invertible.

Proof.
We outline the proof: Assume without loss of generality (WLOG) that
F(0) = 0 (since we can shift the coordinate system to make this true).
Now we define F̂ ≡ D0F−1 ◦ F so that F̂(0) = 0 and D0F̂ = I. Here and
below, I denotes the identity on Rn and IE denotes the Identity on Rn

restricted to the set E.

1 Choose 0 < ε < 1/4.
2 Define G = I− F̂.
3 Using the fact that F̂ is Ck for k > 1, we have that
4 the operator norm of DG, |DG|, is less than ε if we stay in some small

neighborhood of the origin U = B(0, δ(ε)): I.e. ||DxG(h)||
||h|| < ε for x ∈ U

and all h 6= 0.
5 Using the mean value theorem in vector spaces, we get that restricted

to U, G is a contraction mapping with contraction constant ε – i.e.
|G(x) −G(y)| 6 ε|x− y| if x,y ∈ U.

6 Define H = (I+G+G2 +G3 + ...) and note tht F̂ = I−G.
7 We note that by contruction, for x,y ∈ U,

3

4
|x− y| 6 |F̂(x) − F̂(y)| 6

5

4
|x− y|

1

2
|x− y| 6 |H(x) −H(y)| 6

3

2
|x− y|

and we conclude that both F̂ and H are continuous on U, with contin-
uous inverses on F̂(U) and H(U) respectively.
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8 Because
∑k
i=0G

i converges uniformly to H and
∑k
i=0DxG

i converge
uniformly, we know that DH = I+DG+DG ◦DG+ ... =

∑∞
i=0DxG

i

and that this derivative is continuous. (See pages 189-190 of [25])
9 Define W = B(0, δ(ε)2 ).

10 From Step 7 above,

F̂(W) ⊂ 5
4
W ⊂ U

and
H(F̂(W)) ⊂ 2W = U

but we know more because the uniform convergence of the geometric
series defining H implies that for all ∈W

(I−G)(I+G+G2 + ...)(x) = x

and
(I+G+G2 + ...)(I−G)(x) = x

so that we have
H ◦ F̂ = IW

and
F̂ ◦H = IF̂(W)

11 Using the fact that DyH = [DH(y)F̂]
−1, we deduce that if F̂ is Ck

differentiable, then so is H. We do this as follows.
a We already have that H is in C1.
b Suppose that H is in Cr with r 6 k− 1. We have that DyH is the

composition

{inversion which is C∞} ◦ {D∗F̂ which is Ck−1} ◦ {H which is Cr}

and so DyH ∈ Cr → H ∈ Cr+1.
c We continue this to get H ∈ Ck.

12 So F̂−1 exists and is Ck differentiable on F̂(W).
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Theorem 11.10.3 (Implicit Function Theorem). Suppose F is Ck, F :

Rn → Rm, m < n, and DF is full rank at x∗ ∈ Rn. Denote the first m
coordinates by x ′ and the last n−m by x ′′ so that x = (x ′, x ′′). Without loss
of generality, assume the firstm columns ofDF are independent. Then there is
an ε > 0 and a Ck mapping g : Rn−m → Rm such that F(g(x ′′), x ′′) = F(x∗)
for all x ′′ ∈ Rn−m such that ||x ′′ − (x∗) ′′|| < ε.

Proof.
The idea of the proof is simple: we augment F to get an invertible
transformation and then fiddle with it. Define F̂ : Rn → Rn by
F̂(x) = (F(x), x ′′). Now we note that Dx∗ F̂ is invertible so that there is
an inverse of F̂, G(y) = (g(y ′,y ′′),y ′′). Computing F̂ ◦G(y) (= y) we
have F̂(G(y)) = (F(g(y ′,y ′′),y ′′),y ′′) = (y ′,y ′′) for all y = (y ′,y ′′) in
some neighborhood of (F(x∗), x∗ ′′). Looking at the first component
only, we have F(g(y ′,y ′′),y ′′) = y ′. Fixing ĝ(y ′′) = g(F(x∗),y ′′), we get
that F(ĝ(y ′′),y ′′) = F(x∗) for all ||y ′′ − x∗ ′′|| < ε for some sufficiently
small ε > 0.

Example 11.10.2. Consider some function f mapping Rn to R. Then in
order to apply the implicit function theorem at some point x∗, we need
Df = ∇f to be full rank at x∗. Since min(m,n) = 1, at least one component
of the gradient needs to be non-zero at x∗ in order to conclude that locally,
the level set through x∗ is an (n− 1)-manifold.

11.10.6 Implicit Function Theorem, intuitively, again

The idea behind the implicit function theorem is that:

Full Rank If I am at some point x∗ on the c-level set of f : Rn+k →
Rn and Dx∗f is full rank, I know that, after possibly relabeling the
coordinates, the first n columns of the derivative matrix for Dx∗f form
a non-singular n-by-n submatrix.
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Invertible + C1 means . . . If we let x ∈ Rn+k be represented by
x = (x ′, x ′′) where x ′ ∈ Rn and x ′′ ∈ Rk, we have that

Dxf(x
∗) = [Dx ′f(x

∗) Dx ′′f(x
∗)]

where Dx ′f(x∗) is an n-by-n matrix and Dx ′′f(x∗) is an n-by-k matrix,
and Dx ′f(x

∗) maps the first n variables in Rn+k invertibly onto the
range of f: we can get anywhere in the range by putting the correct
input into Dx ′f(x

∗). Because f is C1, we know that the derivative
Dx ′f(x

∗ + h) is also non-singular for small enough h: |h| < ε for some
ε > 0.

What it boils down to : if we know that f(x∗) = f(x∗
′ , x∗ ′′) = c

and we now that Dx ′f(x∗) is invertible (because Df is full rank at x∗),
then we know that
1 f(x∗

′ , x∗ ′′) = c.
2 If we perturb (i.e. change) x∗ ′′ by a small η ′′ ∈ Rk to get x∗ ′′ + η ′′ , f

will change from c to c+ δ for some small δ.
3 That is: f(x∗ ′ , x∗ ′′ + η ′′) = c+ δ.
4 Now, because Dx ′f(x∗

′ , x∗ ′′ +η ′′) is non singular, the inverse function
theorem says that for any small enough δ in the range, there is a
unique small η ′ , such that f(x∗ ′ + η ′ , x∗ ′′ + η ′′) − f(x∗ ′ , x∗ ′′ + η ′′) = −δ.

5 Since η ′ depends on η ′′ , we write η ′ = g(η ′′).
6 We arrive at

f(x∗
′
+ g(η

′′
), x∗

′′
+ η

′′
) = f(x∗

′
+ g(η

′′
), x∗

′′
+ η

′′
) − f(x∗

′
, x∗

′′
+ η

′′
)

+ f(x∗
′
, x∗

′′
+ η

′′
)

= −δ+ (c+ δ)

= c.

7 Because g : Rk → Rn, we see that for some small enough ε > 0,
the set, B(x∗, ε) ∩ {x = (x ′, x ′′) | c = f(x ′, x ′′)} is actually the set
B(x∗, ε) ∩ {x = (g(x ′′), x ′′) | c = f(g(x ′′), x ′′). But because x ′′ ∈ Rk

this implies that the set is k-dimensional. The crucial fact is that
x ′′ → (g(x ′′), x ′′) is an invertible map.

Details The smoothness of the function g : Rk → Rn follows from
the properties of the inverse function theorem.

270



11.10 inverse and implicit function theorems

11.10.7 Implicit Function Theorem: Co-Dimension 1

How would you use the implicit function theorem? Here is a pseudo-
computational explanation, by which I mean that it leans towards
computation, but is actually intended to give a deeper idea of what
the theorem means and give someone a path to investigate for compu-
tational purposes. We explore the co-dimension 1 case.

1 So you are given a function f : Rn → R and a level α and a point
x̂ ∈ f−1(α).

2 You need to know that Dx̂f = ∇x̂f is full rank, which in the case of 1
by n matrices (i.e. row vectors, which is what a gradient is) we simply
want to know that one of the partial derivatives of f at x̂ is not equal
to zero.

3 (Actually, if α is a regular value of f, then we know this since this
means, by definition, that the derivative of f is full rank at every point
in f−1(α). But we actually only need f differentiable at x̂.)

4 We also need that f ∈ C1 – the derivative exists and is continuous.
5 Now we note that the gradient is normal to the α-level set f−1(α) which

is the same statement as “the planes defined by the gradient vector
are tangent to the level surface”. This tangent plane is determined by
the gradient vector as follows.

6 Define

N =
∇x0f
|∇x0f|

.

7 As long as the gradient is not horizontal – by which we mean that it
has an nth coordinate = 0 – then we can write the nth coordinate as a
function the first n-1 coordinates:

N = (N1,N2, ...,Nn)

N · (x− x0) = 0

N1x1 +N2x2 + · · ·+Nnxn = N ·X0
= C.

See the example in 3 dimensions in Figure 64.
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Figure 64: Non-horizontal gradients.

8 Now, rotate the coordinates so that the gradient vector of f points
in the direction of the nth coordinate axis. I.e. rotate Rn so that
∇x̂f = β(0, 0, ..., 0, 1) where β = |∇x̂f|. See Figure 65

9 Now we apply these insights to rotated level set and the now vertical
gradient vector, which is therefore normal to a horizontal tangent
plane at the rotated point that we again denote by x̂.

10 Let x̂ = (x̂ ′, x̂n) ≡ (x̂1, x̂2, · · · , x̂n−1, x̂n) and note that x̂ ′ ∈ Rn−1. We
also represent any x in the rotated frame by x = (x ′, xn), x ′ ∈ Rn−1

and we let x0 be any point on f−1(α).
11 Note that because f ∈ C1 we know that for some little ball in the space

of the first n-1 coordinates, B(x̂ ′, ε) centered at x̂ ′ in the horizontal
Rn−1, the gradient is not too far from vertical. See Figure 66

12 Here is a short argument: we know that the surface tangent planes
Hx0(x), thought of as functions from Rn−1 → R, have small gradients
everywhere because from the example above, for x ′0 ∈ B(x ′, ε)

∇Hx0(x
′) = (

f1(x0)

fn(x0)
,
f2(x0)

fn(x0)
, . . . ,

fn−1(x0)

fn(x0)
)
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Figure 65: Rotating the coordinate system.
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Figure 66: Gradient is continuous and so remains nearly vertical
nearby.

and at x̂ we have that

0 = f1(x̂) = f2(x̂) = f3(x̂) = · · · = fn−1(x̂)

and
β = fn(x̂) 6= 0.

Because the first n-1 partial derivatives are continuous, they remain
small in a small ball about x̂ ′.

13 Because of this, we know that g, which is the function the implicit
function theorem gives us

f(x1, x2, · · · , xn−1,g(x1, x2, · · · , xn−1)) = α

is Lipschitz with small Lipschitz constant K = |(k1,k2, ..., kn−1)| where
|f1(x0)| 6 k1 and |f2(x0)| 6 k2 and |f3(x0)| 6 k3 and etc.

14 ... and we can solve for g at any point x ′ + h, for any h ∈ Rn−1 and
|h| 6 ε, there is a small y such that f(x ′ + h,y) = α.

15 Thus we can shoot vertically at x ′ + h to find the point where f = α.
See Figure 67.
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Figure 67: We shoot vertically to find the surface.

16 We can actually use this argument to prove that a g exists that is
Lipschitz and satisfies

f(x1, x2, · · · , xn−1,g(x1, x2, · · · , xn−1)) = α

in a neighborhood of x̂.

Exercise 11.10.1. Convince yourself that there is a Lipschitz function
g, using only the fact that the normals are close to vertical near x̂, such
that

f(x1, x2, · · · , xn−1,g(x1, x2, · · · , xn−1)) = α

for x ′ ∈ B(0, ε) Hint: think about it geometrically ... go ahead and
do this when n = 2 so you can draw it easily and think about the
drawings.

Exercise 11.10.2. Define z = f(x,y) = x2 − y2. For what values of c is
the c-level set Lc = {(x,y) | f(x,y) = c} not regular? Find the points
(x∗,y∗) in each regular level set Lc such that either f(x,h(x) = c or
f(g(y),y) = c does not hold near (x∗,y∗). See Section 11.9.2.
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12
Measures and Integrals :

Mechanics and Nuance

12.1 Integration

In this section, we dive into the integration of functions by motivat-
ing the introduction of the Lebesgue integral (and measure) using a
function which is 1 on the rationals and 0 on the irrationals.

12.2 Riemann vs Lebesgue

We begin with an observation that there are functions we would
like to integrate (at least for theoretical purposes) that do not have
Riemannian integrals.

Define the function fQ(x) by:

fQ : [0, 1]→ [0, 1] ≡

{
1 (when x ∈ Q∩ [0, 1])
0 (when x ∈ [0, 1] \ Q).

Now recall that, given a partition P of the domain [0, 1] into sequential
intervals by the points

0 = p0 < p1 < p2 < p3 < ... < pm = 1,

the Riemann upper and lower integrals are defined to be:∫∗
f(x) dx ≡ inf

P∈P

(
m−1∑
i=0

(pi+1 − pi) sup
y∈[pi,pi+1)

f(y)

)
(27)

∫
∗
f(x) dx ≡ sup

P∈P

(
m−1∑
i=0

(pi+1 − pi) inf
y∈[pi,pi+1)

f(y)

)
(28)

where P is the family of all finite partitions of [0, 1]. We say that f is
Riemann integrable if

∫∗
f(x) dx =

∫
∗ f(x) dx.
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Exercise 12.2.1. Show that for any two partitions of [0, 1], P = {pi}
m
i=0

and Q = {qi}
k
i=0,(

m−1∑
i=0

(pi+1 − pi) sup
y∈[pi,pi+1)

f(y)

)
>

(
k−1∑
i=0

(qi+1 − qi) inf
y∈[pi,pi+1)

f(y)

)
.

Exercise 12.2.2. Show that 1 =
∫∗
fQ(x) >

∫
∗ fQ(x) = 0.

But it seems completely sensible to say that
∫1
0 fQ = 0. The solution to

this problem turns out to be easy: partition the range, instead of the
domain.

For now we will assume an intuitive grasp of the idea of µ(E), the
measure of a set E (i.e. appropriately dimensioned volume of E). It
really is just what you think it should be – the 1-volume (length),
2-volume (area), ..., k-volume of a k-dimensional set – a fact that will
be made clear in the next section when we define outer measures and
a couple of specific families of measures on Rn.

Remark 12.2.1. Though this is where we start – measures are essentially
volumes of various dimensions – and this notion takes us a very long way,
there are large/wild (and yet useful!) generalizations of the notion of measure.
For example, in the theory of infinite dimensional normal operators, measures
are constructed that assign a measure to a subset of the complex numbers and
that measure of a set is a projection operator! What we need in this course,
will be satisfied by generalized volumes and weighted volumes.

Suppose that we partition a set A ⊂ Rn into A = ∪N̂i=1Ei, Ei ∩ Ej = ∅
for all i 6= j, where N̂ = ∞ is a possibility. Suppose further that
χE : Rn → R is the characteristic function on E: i.e. χE(x) = 1 when
x ∈ E and χE(x) = 0 when x ∈ Ec. Now, for any non-negative sequence
{αi}

N̂
i=1 (αi > 0 for all i) we define a simple function s(x) by

s(x) =

N̂∑
i=1

αiχEi(x).
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We now define the integral of s(x) to be

∫
s(x) dµx ≡

N̂∑
i=1

αiµ(Ei).

Now letting s(x) denote a simple function, we define

∫∗
fdµ = inf

s:s(x)>f(x)∀x

∫
s(x) dµ

and ∫
∗
fdµ = sup

s:s(x)6f(x)∀x

∫
s(x) dµ.

Definition 12.2.1 (Lebesgue Integrable Functions). Define f+(x) ≡
max{0, f(x)} and f−(x) ≡max{0,−f(x)}. Then

1 We say that f > 0 is Lebesgue integrable if
∫∗
fdµ =

∫
∗ fdµ. See Figure (68).

2 We say that f is Lebesgue integrable if both f+(x) and f−(x) are and at
least one of these two integrals is finite. In this case, we define

∫
f dµ =∫

f+ dµ−
∫
f− dµ.

Example 12.2.1 (Lebesgue Integrability). Returning to the integration of
any function f : [0, 1]→ [0, 1], pick a positive integer M <∞ and notice that
if we define Ei = f−1([ i−1M , iM)) for i = 1, ...,M and then define

su(x) ≡
M∑
i=1

i

M
χEi(x)

and

sl(x) ≡
M∑
i=1

i− 1

M
χEi(x)

we have that
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1 su(x) > f(x) for all x ∈ [0, 1] and
2 sl(x) 6 f(x) for all x ∈ [0, 1],
3 which allows us to conclude that∫

su(x) dµ−

∫
sl(x) dµ =

1

M
→ 0
M→∞

implying that f is integrable.

Exercise 12.2.3. Convince yourself (i.e. prove) that if s(x) and r(x)

are two simple functions such that s(x) 6 f(x) 6 r(x) for all x, then∫
A s dµ 6

∫
A r dµ. Note that we are defining the integrals here, so you

have to be careful to not assume what you are trying to prove.

Exercise 12.2.4. Show that
∫
fQ(x) dµ exists and equals 0.

It turns out that the one thing we have assumed – that µ(Ei) makes
sense for any Ei ≡ f−1([a,b)) – opens up an important subject for us
to look into more carefully. The reason for that is, if we assume that µ
makes sense for all subsets of Rn we run smack dab into the Banach-
Tarski paradox implying that we cannot let all sets be “measurable” if
we want to have those measurements mean something.

Exercise 12.2.5. Look up the Banach-Tarski Paradox on Wikipedia and
read about it.

So, when we have a measure µ on some space X, it is always the case
that we will also have some collection of sets Xµ that are said to be
µ-measurable. We get into this in more detail in Section 12.3.

Remark 12.2.2 (Summable versus Integrable). We will say a function f
is summable if it is integrable and the integral of the function is finite.

We will look more carefully and completely at the Lebesgue integral
in Section 12.4 and to prepare for that we need to loom more closely
at measures. This is what we do next.
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I4...

I1

I2

I3

...

· · ·
· · ·

E1 E1 E3 E4 · · ·

E3 = f
−1(I3)

E4 = f
−1(I4)

E2 = f
−1(I2)

E1 = f
−1(I1)

Figure 68: Riemann versus Lebesgue Integration: the upper figure
illustrates the partition of the domain dictated by the Riemannian
approach. The green and red rectangles live completely below the
graph of f. Call the area they sum to Alower(P) where P is the partition.
The red and green plus the cyan rectangles live completely above
the graph. Call their area Aupper. If supP Alower(P) = infP Aupper
then f is Riemann integrable. The lower figure illustrates that key
difference for the Lebesgue case: we partition the range and pull that
back by f−1 to a partition of the domain. It turns out that this is
exactly what is needed to make all reasonable functions integrable.
Now Alower(P) =

∑
i aiµ(Ei) and Aupper(P) =

∑
i biµ(Ei) where P is a

partition of the range into the intervals Ii = [ai,bi).

281



measures and integrals : mechanics and nuance

12.3 Outer Measures

The approach to measure theory I like closely follows the approach
used by Evans and Gariepy in their Measure Theory and Fine Properties of
Functions[12] – a book I very highly recommend for anyone interested
in analysis.

Definition 12.3.1 (Power Set). The collection of all subsets of a space X is
denoted 2X and is called the power set of X.

Definition 12.3.2 (Outer Measure). Any function, µ, mapping subsets
of a space X to [0,∞] – µ : 2X → [0,∞] – satisfying the following two
conditions:

1 µ(∅) = 0
2 µ(E) 6

∑N
i=1 µ(Fi) whenever E ⊂ ∪iFi and 0 < N 6∞.

is called an Outer Measure.

Both families of measures we use in this book – the Lebesgue measures
and the Hausdorff measures – are outer measures. Because of the
Banach-Tarski Paradox, we know that we cannot just let every set into
the club of sets whose outer measure is meaningful.

Definition 12.3.3 (Measurable Sets). If a set E ⊂ X has the property that
for all A ∈ 2X:

µ(A) = µ(A∩ E) + µ(A∩ Ec)

we say that E is µ-measurable or simply measurable if the µ is clear from the
context.

The idea is that E slices every set up in a sensible way.
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Exercise 12.3.1. (Easy consequences of the definition of measurabil-
ity) Show that the definition of measurability easily gives us (1) that E
measurable ⇒ Ec is measurable; and (2) X and ∅ are measurable.

Remark 12.3.1. Note that we always have that

µ(A) 6 µ(A∩ E) + µ(A∩ Ec)

so we only need to show

µ(A) > µ(A∩ E) + µ(A∩ Ec)

to prove that
µ(A) = µ(A∩ E) + µ(A∩ Ec).

Exercise 12.3.2. Show that if µ(E) = 0, then E is measurable.

Definition 12.3.4 (σ-algebra of sets). A collection of sets A is a σ-algebra
if:

1 ∅, X ∈ A

2 A ∈ A⇒ X \A = Ac ∈ A

3 Every set in the sequence {Ai}
∞
i=1 is in A implies that ∪∞i Ai ∈ A.

Theorem 12.3.1 (Properties of Measures). Suppose that {Ei}∞i=1 is a se-
quence of measurable sets. Then we have that:

1 ∪∞i Ei and ∩∞i Ei are measurable.
2 The collection of sets which are measurable form a σ-algebra.
3 If {Ei}∞i=1 are pairwise disjoint – Ei ∩ Ej = ∅ when i 6= j – then

µ (∪∞i Ei) =
∞∑
i=1

µ(Ei).

This property is called countable additivity.
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4 If E1 ⊂ E2 ⊂ · · · ⊂ Ek ⊂ Ek+1 ⊂ · · · then

lim
i→∞

µ(Ei) = µ (∪∞i Ei) .

5 If µ(E1) <∞ and E1 ⊃ E2 ⊃ · · · ⊃ Ek ⊃ Ek+1 ⊃ · · · then

lim
i→∞

µ(Ei) = µ (∩∞i Ei) .

Proof.
See the beginning of Chapter 1 of Evans and Gariepy [12]

Exercise 12.3.3. Show that Exercise 12.3.1 and Theorem 12.3.1 can be
used to prove that the collection of measurable sets of any measure is
a σ-algebra

12.3.1 Lebesgue and Hausdorff Measures

The d-dimensional Lebesgue measures are constructed by using d-
dimensional rectangles to cover E ⊂ Rd and taking an infimum. We
define an open rectangle R to be

R = R(x∗, ε∗) = {(x1, x2, ...xd) ∈ (x∗1, x∗1+ε1)× (x∗2, x∗2+ε2)×· · ·× (x∗d, x∗d+εd)}

where εi > 0 for all i and its content, c(R), to be the product of the
side-lengths of the rectangle = its usual d-volume:

c(R) = ε1ε2 · · · εd = Πdk=1εk.

We can now define:

Definition 12.3.5 (Lebesgue Measure).

Ld(E) ≡ inf
{R|E⊂∪iRi}

∑
c(Ri)
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where we are minimizing over all R, the countable covers of E by open
rectangles: R = {Ri}

∞
i=1.

Exercise 12.3.4. Show that the Lebesgue measure of a set E does not
change if we use closed rectangles to cover E instead of open rectangles.
More precisely, define a closed rectangle R̂ to be

R̂ = R̂(x∗, ε∗) = {(x1, x2, ...xd) ∈ [x∗1, x∗1+ε1]× [x∗2, x∗2+ε2]×· · ·× [x∗d, x∗d+εd]}

where εi > 0 for all i and its content, c(R̂), to be the product of the
side-lengths of the rectangle = its usual d-volume:

c(R̂) = ε1ε2 · · · εd = Πdk=1εk.

Now minimize the sums of contents of closed rectangle covers of E.
Show that the measure of E remains the same. Thus we can used open
or closed rectangles to compute the Lebesgue measure of a set.

Exercise 12.3.5. (Lebesgue Measure of Rectangles = Their Content)

1 Show that Ld(S) = 0 for any S = {x ∈ Rd | xi = c}. I.e. The d-
dimensional measure of any d-1-dimensional plane in Rd obtained by
holding the i-th coordinate constant, is 0.

2 Show that if µ(D) = 0, then µ(C∪D) = µ(C).
3 Show that the measure of any rectangle when some or all of the

intervals defining it are not open is the same as the corresponding
open rectangle.

4 Show that for any rectangle R ⊂ Rd,

Ld(R) = c(R).

Hint: take the closed rectangle R̄ corresponding to R and notice that
any cover with open rectangles has a finite subcover also covering R̄.
This is not a trivial exercise, so beware of trivial arguments.

Definition 12.3.6 (ω(η)). We define ω(η) ≡ π
η
2

Γ( η2+1)
to be the η-volume of

the “η-dimensional” unit ball. This number agrees with the usual volume
when η is an integer.
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Now we define the family of Hausdorff outer measures. We can take
any countable cover of a set E and then measure each by the volume
of the ball having the same diameter. For any real number η ∈ [0,∞),
we define:

Definition 12.3.7 (Hausdorff Measures, Hη).

H
η
δ(E) ≡ inf

{Fi}
∞
i=1|E⊂∪iFi and supi(diamFi)6δ

ω(η)
∑
i

(
diam Fi
2

)η
and then

Hη(E) = lim
δ→0

H
η
δ(E).

Remark 12.3.2. It turns out that when η is a non-negative integer and the
space we are measuring is Rη, Lη = Hη. (See Evans and Gariepy’s book for
a proof of this fact.)

The first thing we will prove is that for any fixed E ⊂ Rn, the graph of
Hk(E) versus k looks like the graph in Figure (69).

Theorem 12.3.2 (Definition of Hausdorff Dimension). Suppose that
E ⊂ Rn for some n <∞. Then Hk(E) = 0 for k > d∗ for some d∗ 6 n and,
if d∗ > 0, Hk(E) =∞ for k < d∗. This is illustrated in Figure (69).

Remark 12.3.3. It turns out that each of the three cases (1) dim(E) = d∗

and Hd
∗
(E) = 0, (2) dim(E) = d∗ and Hd

∗
(E) =, and (3) dim(E) = d∗ and

Hd
∗
(E) =∞ can occur.

Proof of Theorem 12.3.2.

1 First we show if 0 6 Hk(E) <∞ then Hk+η(E) = 0 for any η > 0.
a Choose ε > 0.
b Choose 0 < δ < 1 such that

(
δ
2

)η
< ε.

c By the definition of Hausdorff measure, there is a δε < δ such that∣∣Hkδε(E) −Hk(E)
∣∣ < ε/2.
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d∗

∞

0

Hk(E)

k

Figure 69: Graph of the Hausdorff measure Hk(E) of a set E as we vary
k, the dimension of the measure. We define d∗, where the measure
switches from ∞ to 0 to be the dimension of the set E.

d There is also a cover {Fi}
∞
i=1 ∈ Fδε such that

∣∣∣∣∣Hkδε(E) −ω(k)
∑
i

(
diam Fi
2

)k∣∣∣∣∣ 6 ε/2.
e We get that

∣∣∣∣∣Hk(E) −ω(k)
∑
i

(
diam Fi
2

)k∣∣∣∣∣ 6 ε
from which we get that

ω(k)
∑
i

(
diam Fi
2

)k
6 Hk(E) + ε.
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f Now we note that this implies that

ω(k)
∑
i

(
diam Fi
2

)k+η
= ω(k)

∑
i

(
diam Fi
2

)k(diam Fi
2

)η
6 ω(k)

∑
i

(
diam Fi
2

)k(
δ

2

)η
< ω(k)

∑
i

(
diam Fi
2

)k
ε

6 (Hk(E) + ε)ε.

g This implies H
k+η
δ (E) < ε(Hk(E) + ε).

h Since ε > 0 was arbitrary and Hk(E) < ∞, we conclude that
H
k+η
δ (E) = 0.

i But δ can be chosen arbitrarily small, implying that

Hk+η(E) = lim
δ→0

H
k+η
δ (E) = 0.

2 Suppose that H0(E) <∞. Then what we just proved shows that we
have that Hk(E) = 0 for all k > 0 and we are done.

3 The Hausdorff dimension of a subset of Rn cannot be bigger than n ...
Exercise 12.3.6. Show that if ε > 0 then Hn+ε(Rn) = 0.

4 If we did not end the proof at Step 2, then it must be the case that
H0(E) =∞.

5 Define d∗ ≡ sup{x 6 n | Hx(E) > 0}. Then by Step 1 Hx(E) = ∞ for
0 6 x < d∗

6 We conclude that Hk(E) =∞ for k < d∗ and Hk(E) = 0 for k > d∗.

Exercise 12.3.7. Show that set

E ≡ {(x1, x2, x3) | x1 ∈ [0, 1], x2 ∈ [0, 1], x3 = 0}

– a 2 dimensional square embedded in R3 – satisfies H3(E) = 0.
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Exercise 12.3.8. Show that you can assume the sets used to generate
the covers in the Hausdorff definition are convex. Hint: Show that for
any E ⊂ Rn,

diam(E) = diam(cnv(E))

where diam(A) denotes diameter of a set A and cnv(A) denotes the
convex hull of a set A. Do this by showing:

1 For the set to have finite diameter, it must be bounded.
2 E ⊂ cnv(E) implies that diam(E) 6 diam(cnv(E)).
3 There is a sequence of pairs of points in cnv(E), {pi,qi}∞i=1 such that

|pi − qi|→ diam(cnv(E)).
4 There is a subsequence i(k) such that pik → p∗ and qik → q∗ and

|p∗ − q∗| = diam(cnv(E)).
5 The projection of E onto the line Lp∗,q∗ through p∗ and q∗ has diameter

at most diam(E).
6 If the smallest interval in Lp∗,q∗ containing this projection is defined to

be P, the E lives between the two n− 1-dimensional planes orthogonal
to Lp∗,q∗ through the endpoints of P. (Though not necessarily strictly
between!)

7 That cnv(E) also must be contained between the two n− 1-dimensional
planes orthogonal to Lp∗,q∗ through the endpoints of P (since cnv(E)
= intersection of all convex sets containing E and the set of points
between and including the two planes is convex). This implies that p∗

and q∗ are the endpoints of P!
8 In conclusion, we must have that

diameter of cnv(E) = |p∗ − q∗|

= diameter of projection of cnv(E) onto Lp∗,q∗

= diam(P)

6 diam(E).

Exercise 12.3.9. Show that you can assume the sets used to generate
the covers in the Hausdorff definition are open. Hint: Show that ...
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1 For any cover of a set E, {Fi}∞i=1, the sets

F̂i ≡ B(Fi, δi) ≡ ∪x∈FiB(x, δi)

are open.
2 Choose ε > 0.
3 Now assume that {Fi}∞i=1 is a cover of E and show that if we define

δi =

((
diam(Fi)

2

)d
+ εi

) 1
d

−
diam(Fi)

2

then (
diam(Fi)

2
+ δi

)d
=

(
diam(Fi)

2

)d
+ εi.

4 Use this to show

ω(d)

∞∑
i=1

(
diam F̂i
2

)d
= ω(d)

∞∑
i=1

(
diam Fi
2

)d
+ω(d)

ε

1− ε
.

5 Use this to deduce that the infimum over arbitrary open covers is the
same as the infimum over arbitrary covers.

Exercise 12.3.10. Show that if F is a convex set, then B(F, ε) ≡ ∪x∈FB(x, ε)
is an open convex set.

Exercise 12.3.11. Show that we may also restrict ourselves to closed
sets when covering a set in order to compute Hausdorff measures.
Hint: If we denote the closure of E by Ē, you simply need to show that
diam(E) = diam(Ē).

Exercise 12.3.12. suppose that S = [a,b]× {0} is a closed line segment
in R2. Show that H1(S) = b− a. Hint: Exercises 12.3.8, 12.3.9, 12.3.10

and the fact that S is compact, allow you use open, convex sets in your
cover of S and then throw away all but a finite number of them in your
Hausdorff measure computations.
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12.3.2 Radon Measures and Approximation

Definition 12.3.8 (Borel Sets). A Borel set is any subset in the smallest
σ-algebra of sets containing the open sets.

Definition 12.3.9 (Regular, Borel, Borel Regular, Radon). Suppose that
µ is an outer measure on X = Rn.

Regular If, for every set A ⊂ X, there is a measurable set B, such that
A ⊂ B and µ(A) = µ(B), then we say µ is a regular measure.

Borel If every Borel set is measurable by µ, we say that µ is a Borel
measure.

Borel Regular If µ is a Borel measure and for every set A ⊂ X, there is
a Borel set B, such that A ⊂ B and µ(A) = µ(B), then we say µ is a Borel
regular measure.

Radon If µ is a Borel Regular measure and µ(K) <∞ for all compact sets
K, we say that µ is a Radon measure.

The following approximation property of Radon measures is very
useful.

Theorem 12.3.3 (Approximation of Radon Measures). Suppose that µ
is a Radon Measure. Then

1 We can approximate from the outside with open sets: For any set E ⊂ Rn,

µ(E) = inf{µ(O) | E ⊂ O, O is open}.

2 We can approximate from the inside with compact sets: For any measurable
set E ⊂ Rn,

µ(E) = sup{µ(K) | K ⊂ E, K is compact}.
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Exercise 12.3.13. Show that Hausdorff measures satisfy part 1 of The-
orem 12.3.3 ... I.e. the measure of a set is approximated by open sets
from outside.

12.3.3 Caratheodory Criterion

Here is a very useful criterion telling us when the Borel sets are
measurable.

Theorem 12.3.4 (Caratheodory Criterion). If µ is an outer measure on
Rn and we know that dist(A,B) > 0 ⇒ µ(A∪B) = µ(A) + µ(B), then µ
is a Borel measure – i.e. all Borel sets are measurable.

Proof.
If we show that all closed sets are measurable, then, because the
class of measurable sets is a σ-algebra, we know all open sets are
also measurable. Therefore the measurable sets contains the smallest
σ-algebra containing the open sets – the Borel σ-algebra.

1 Let A be an arbitrary set in X and C be a closed set.
2 The result is immediate if µ(A) =∞, so assume µ(A) <∞.
3 Define

Cn = {x ∈ Rn | dist(x,C) 6
1

n
}

where dist(x,C) is the distance from x to the set C.
4 Because dist(C,Ccn) = 1

n > 0, we know that

µ(A) > µ({A∩C}∪ {A∩Ccn}) = µ(A∩C) + µ(A∩Ccn).

5 Define

Ai = {x ∈ A |
1

i+ 1
< d(x,C) 6

1

i
}.

Then
A = {A∩C}∪ {A∩Ccn}∪ {∪∞i=nAi}.
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6 We want to show that

µ(A) > µ(A∩C) + µ(A∩Cc).

7 Because of Step 4 above and

{A∩C}∪ {A∩Cc} ⊂ {A∩C}∪ {A∩Ccn}∪ {∪∞i=nAi}

we know that

µ(A) +

∞∑
i=n

µ(Ai) > µ(A∩C) + µ(A∩Ccn) +
∞∑
i=n

µ(Ai)

> µ(A∩C) + µ(A∩Cc).

8 Now all we need is that
∑∞
i=1 µ(Ai) <∞, because this implies

∞∑
i=n

µ(Ai)→ 0

as n→∞ which in turn implies

µ(A) + ε > µ(A∩C) + µ(A∩Cc)

for all ε > 0.
9 Now we show that

∑∞
i=1 µ(Ai) <∞.

10 Defining A ′n = A1 ∪A3 ∪A5 ∪ ...∪A2n+1 A ′′n = A2 ∪A4 ∪A6 ∪ ...∪A2n
and noting that for all n, we have
• µ(A) > µ(A ′n)
• and by the hypothesis dist(A,B) > 0 ⇒ µ(A ∪ B) = µ(A) + µ(B)

we have

µ(A ′n) = µ(A1 ∪A3 ∪A5 ∪ ...∪A2n+1)
= µ(A1) + µ(A3) + µ(A5) + ... + µ(A2n+1)

• and µ(A) > µ(A ′′n)
• and by the hypothesis dist(A,B) > 0 ⇒ µ(A ∪ B) = µ(A) + µ(B)

we have

µ(A ′′n) = µ(A2 ∪A4 ∪A6 ∪ ...∪A2n)
= µ(A2) + µ(A4) + µ(A6) + ... + µ(A2n).
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• We conclude that
∑∞
i=1 µ(Ai) 6 2µ(A).

11 We are done!

Exercise 12.3.14. Show that Lebesgue measure of a set can be found
be restricting yourself to covers with rectangles whose side-length is
bounded by any δ > 0.

Exercise 12.3.15. Show that both Lebesgue and Hausdorff measures
are Borel Regular.

12.4 Measurable Functions and Integration

We now look more carefully at the ideas we saw briefly in Section 12.2.

Lebesgue integration is the typical choice of analysts when they want
to think about integrating things. But it is not the only choice. Daniell
integrals, Steltjes integrals, and a bunch of others are out there, all with
their particular uses and enthusiasts. Our approach here is pragmatic:
Lebesgue works for most things and for those things we will use it.
When it doesn’t quite fit the bill, we use what does work.

So, what is Lebesgue integration and how does it differ from Riemann
integration? As you have already seen, in Riemann integration, we
partition the domain into regular subsets (intervals or rectangles) and
take the largest and smallest functional values attained in each subset,
multiply these values by the measure of those subsets and sum these
up, after which we take infimums and supremums:

∫∗
fdµ ≡ inf

P

∑
i

sup
x∈Ii

f(x)µ(Ii)
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∫
∗
fdµ ≡ sup

P

∑
i

inf
x∈Ii

f(x)µ(Ii)

where P is the partition of the domain into intervals Ii. If
∫∗
fdµ =∫

∗ fdµ then we say f is Riemann integrable.

As you saw briefly in Section 12.2, the Lebesgue integral partitions the
range into intervals Ii and pulls them back to a partition of the domain:
Ei = f

−1(Ii). (This partition can be very far from regular!) We get:

∫∗
fdµ ≡ inf

P

∑
i

(
sup
y∈Ii

y

)
µ(f−1(Ii)) = inf

P

∑
i

biµ(f
−1(Ii))

∫
∗
fdµ ≡ sup

P

∑
i

(
inf
y∈Ii

y

)
µ(f−1(Ii)) = sup

P

∑
i

aiµ(f
−1(Ii)).

We are rewarded for our change in perspective by the result that now,
every respectable non-negative function is integrable! (By integrable
we will mean the upper and lower integrals are equal.) As a result,
we like the Lebesgue integral and are not so inclined to like the
Riemann integral, even though for many practical purposes they are
indistinguishable (because for really nice functions, they are the same).
Figure 70 illustrates both versions of integration.

12.4.1 Lebesgue Integration

Now we work through the definition of Lebesgue integration a bit
more slowly and carefully. We will do this in three steps:

1 Define step functions carefully (We’ll call them simple functions).
2 Define integrals of step functions.
3 Approximate general functions using step functions and define the in-

tegral of the function as the limit of the integrals of the approximating
step functions.
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I4...

I1

I2

I3

...

· · ·
· · ·

E1 E1 E3 E4 · · ·

E3 = f
−1(I3)

E4 = f
−1(I4)

E2 = f
−1(I2)

E1 = f
−1(I1)

Figure 70: Riemann versus Lebesgue Integration: the upper figure
illustrates the partition of the domain dictated by the Riemannian
approach. The green and red rectangles live completely below the
graph of f. Call the area they sum to Alower(P) where P is the partition.
The red and green plus the cyan rectangles live completely above
the graph. Call their area Aupper. If supP Alower(P) = infP Aupper
then f is Riemann integrable. The lower figure illustrates that key
difference for the Lebesgue case: we partition the range and pull that
back by f−1 to a partition of the domain. It turns out that this is
exactly what is needed to make all reasonable functions integrable.
Now Alower(P) =

∑
i aiµ(Ei) and Aupper(P) =

∑
i biµ(Ei) where P is a

partition of the range into the intervals Ii = [ai,bi).
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12.4.2 Simple Functions

From one point of view, the simplest function we can define is a
function that takes on the value 1 on a some set E and 0 on the
complement of E, Ec ≡ x ∈ Rn \ E. as you already know, we call such
a function the characteristic function of E and we denote it by χE.

χE(x) ≡

{
1 if x ∈ E
0 if x ∈ Ec.

Now we can build any step function we might want to build by scaling
characteristic functions and adding them together. One way to do this
is to partition the domain Rn into a countable collection of sets {Ei}

N
i=1

where N ∈ {Z+ ∪∞}. This yields:

g(x) ≡
∑
i

αiχEi(x).

We call any such step function a simple function. An equivalent defi-
nition defines simple functions g : Rn → R to be those functions that
take on at most a countable number of values.

Definition 12.4.1 (Simple Functions). A simple function is any function
whose range is a countable set. Suppose that {ai}Ni=1, with N 6∞, are the
values that f : X→ R takes. Then defining Ei = f−1(ai), we have that

f(x) =

N∑
i=1

aiχEi(x).

We note that Ei ∩ Ej = ∅ if i 6= j and ∪iEi = X

12.4.3 Integrating Simple Functions

It should seem completely natural to define the integral of χE to be the
measure of E – it agrees with the intuition of area under the graph,
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supported by our definition of the area of rectangles to be width times
height. And so this is what we do:∫

αχE dµ ≡ αµ(E).

If g is a simple function with representation g(x) =
∑
i αiχEi(x), this

leads us to define the integral of a simple function g to be:∫
g dµ ≡

∑
i

αiµ(Ei).

Note: we will require that the Ei’s partition the domain and we will
define 0 · ∞ =∞ · 0 = 0.

12.4.4 Integrating Arbitrary Functions

Above, we are measuring sets like Ei = g−1(αi), the inverse image of
a point in the range of g. More generally, we will work with inverse
images of Borel sets and we would like the f’s we work with to have
the property that such subsets of the domain are always measurable.
If they are, we say f is a µ-measurable function:

Definition 12.4.2 (Measurable Functions). If E = f−1(B) is a µ-measurable
subset of Rn for all Borel B ⊂ R, then f : Rn → R is said to be measurable.

Unless otherwise indicated, all functions will be assumed µ-measurable.

If f : Rn → [0,∞], we define∫∗
fdµ ≡ inf

simple g>f

∫
gdµ

∫
∗
fdµ ≡ sup

simple g6f

∫
gdµ.

Notice that
∫∗
fdµ >

∫
∗ fdµ. If these two values are equal, then we say f

is integrable with respect to µ and we define the integral of a non-negative
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function f to be that common value. Finally, if f : Rn → [−∞,∞], we
say that f is integrable if both it’s positive and negative parts – f+ and
f− – are integrable and one of the values is not infinite. That is, we
define:

Definition 12.4.3 (Integral of an Arbitrary Function). Define f+ =

max{f, 0} and f− = max{−f, 0}. If f+ and f− are integrable and one of the
values is not infinite, then∫

f dµ =

∫
f+dµ−

∫
f− dµ

Theorem 12.4.1. Any µ-measurable, non-negative function is integrable.

Exercise 12.4.1. (Challenging) Prove Theorem 12.4.1. Hint: Here are
some steps (ignore the hint for a more challenging exercise).

1 Enummerate the unit cubes in the upper half space of Rn+1, the graph
space of f : Rn → R, to get {Ci}∞i=1. For example, the first one might
be [0, 1)× [0, 1)× · · · × [0, 1) where the first n factors are in the domain
and the n+ 1st is in the range.

2 Define ran(Ci) = [li, li + 1) to be the last interval in the definition of
Ci – the interval this cube covers over the n-cube defined by the first
n intervals in the definition of Ci.

3 Define Dom(Ci) to be the n-cube defined by the first n intervals in the
definition of Ci.

4 Define, for k = 1 to 2i,

Ei,k =

(
f−1([li +

(k− 1)ε

2i
, li +

kε

2i
))

)
∩Dom(Ci).

5 Now use very analogous ideas to Example 12.2.1 to construct upper
and lower simple functions whose integrals differ by at most ε.

Remark 12.4.1. Note that many other authors use the term integrable to
mean what we mean by integrable and that |

∫
fdµ| <∞.
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Definition 12.4.4 (Summable). We will say that f is µ-summable if f is
integrable and |

∫
fdµ| <∞.

Remark 12.4.2. We notice immediately that sets of measure zero have no
impact on the value of the integral: we may redefine the function on a set
of measure zero and the integral remains unchanged. Notice also that a
countable number of measure zero sets has a union that also has measure zero.
This is a handy fact to keep in mind.

Remark 12.4.3. Notice that the hint in exercise 12.4.1 implies that in fact,
we can focus on partitions of the domain that are pullbacks of partitions of
the range R into intervals: Ei = f−1(Ii).

Any intuitive idea you already have of integration will work if you
allow for the fact that the measure we are integrating against may mea-
sure the sets in the domain quite differently than the usual Lebesgue
measure, though we will usually be using either Lebesgue or Haus-
dorff measures and these do what you think they should (possibly
after studying a few examples). What takes longer to grasp are the
exotic sets that one can define. In fact, from one point of view, that is
the whole point of a large part of geometric measure theory.

12.4.5 Properties of Integrals and Measurable Functions

Exercise 12.4.2. (Linearity) Show that if the integral of one of f or g is
finite, the Lebesgue integral is linear:∫

(αf+βg) dµ = α

∫
f dµ+β

∫
g dµ.

Exercise 12.4.3. You might like to try to prove the following theorem
that appears on page 5 of Evans and Gariepy: at least think about it
before you look up the proof. Let µ be a Borel regular measure on Rn.
Define µ A(E) ≡ µ(E ∩A). Suppose that A ⊂ Rn is µ-measurable and
µ(A) <∞. Then µ A is a Radon measure.

300



12.5 modes of convergence and three theorems

Exercise 12.4.4. Suppose that f : X→ Y and suppose that (f−1(A)|A ∈
A) is measurable in X. Prove that (f−1(B)|B ∈ B) is also measurable
where B is the σ-algebra in Y generated by A. Hint: use Exercise 12.3.3.

Exercise 12.4.5. (Properties of Measurable Functions I) Use the re-
sults of exercise 12.4.4 to show that if f : Rn → R, then showing
that all sets in {f−1((−∞,a)) | a ∈ R} are measurable is enough to
show that f is measurable. Do the same for the collection of sets
{f−1((−∞,a]) | a ∈ R}.

Exercise 12.4.6. (Properties of Measurable Functions II) Suppose f :
Rn → R, g : Rn → R, and {fk : Rn → [−∞,∞]}∞i=1 are all µ-measurable.
Prove:

1 f + g, fg, |f|, min(f,g) and max(f,g) are all measurable. f/g is also
µ-measurable provided g 6= 0 on Rn.

2 infk fk, supk fk, lim infk→∞ fk and lim supk→∞ fk are all µ-measurable.

Hint: see Evans and Gariepy, Theorem 6 in section 1.1 (page 11).

12.5 Modes of Convergence and Three Theorems

If {fi}
∞
i=1 is a sequence of functions from our measure space to R,

fi : X→ R, we would like to know how the integral behaves in relation
to convergence of the sequence. That is, when is it true that

lim
i→∞

(∫
fi dx

)
=

∫ (
lim
i→∞

fi

)
dx? (29)

This is actually a motivating question that leads us to try to under-
stand the differences between the different modes of convergence or
closeness that can be defined. We begin by exploring some examples
a bit.
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12.5.0.1 Examples

Reminder – Uniform Convergence: we say that fi converges uni-
formly to f if

sup
x∈X

|fi(x) − f(x)| →
i→∞

0.

When the measure and convergence of fi to f are

F inite and Uniform : i.e. µ(X) < ∞, and supx∈X |fi(x) − f(x)| →
i→∞

0, the answer to the question in Equation 29 is yes!
Non -finite Measure , Uniform Convergence : The same ques-
tion is answered no, and

F inite Measure , Non -uniform Convergence : no in this case
too.

Exercise 12.5.1. Show that finite measure and uniform convergence
implies we can switch limits with integration, in other words that the
answer to the question in Equation 29 is yes.

Exercise 12.5.2. Give an example of a sequence of functions fi ap-
proaching f uniformly, on a measure space X for which µ(X) is infinite,
where the answer to the question in Equation 29 is no. Hint: look at
constant functions on the real line.

Exercise 12.5.3. Give an example of a uniformly convergent sequence
fi : R→ R, such that

lim
i→∞

(∫
fi dx

)
= 2

and ∫ (
lim
i→∞

fi

)
dx = 0.

Hint: choose fi > 0 such that limi→∞ fi(x) = 0 for every x, and does
so uniformly, and

∫
R fidx = 2 for all i.
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Exercise 12.5.4. Give an example of a non-uniformly convergent se-
quence fi on a finite measure space X where again the answer to the
question in Equation 29 is no. Hint: on the unit interval, with the
usual Lebesgue measure, construct a sequence fi → f ≡ 0 such that∫
fi dx = 1 for all i.

12.5.1 Types or Modes of Convergence

The above examples look at the question of the connection between
pointwise convergence and convergence in norm. But convergence in
norm (i.e.

∫
|fi − f| dx→ 0) is not the only alternative to pointwise con-

vergence. Here are the five modes of convergence that are important
to know about.

Uniform Convergence We say that fi converges uniformly to f if

sup
x∈X

|fi(x) − f(x)| →
i→∞

0.

Convergence a .e . If fi(x) → f(x) as i → ∞ for all x except x ∈ E,
a set of measure 0, we say that fi converges to f almost everywhere
(a.e.).

Convergence in measure If, for any ε > 0 we have that

lim
i→∞

µ({x||fi(x) − f(x)| > ε}) = 0

then we say that fi converges to f in measure.
Convergence in norm If limi→∞ ||fi− f|| = 0, where || · || is a norm
on the function space containing the sequence fi and limit f, then we
say that the fi converge in norm to f. This is also referred to as strong
convergence.

Weak Convergence To define weak convergence, we need the no-
tion of a family of test functions. Typically, test functions are functions
that are nice or even very nice, like positive C∞ functions with com-
pact support. We will denote the family of test functions by Φ and an
individual test function my φ.
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We will say that fi converges weakly to f if

lim
i→∞

∫
φfi dx =

∫
φf dx

for all test functions φ ∈ Φ.

Exercise 12.5.5. Find an example of a sequence of functions fi that
converges to f ≡ 0 in norm even though fi(x) does not converge to
0(= f(x)) for any x ∈ X.

Exercise 12.5.6. Find an example of a sequence of functions fi that
converges pointwise to f ≡ 0 (everywhere, not just a.e.), even though
||fi(x) − f(x)|| = ||fi(x)|| =

∫
|fi| dx does not converge to 0. (I.e. fi does

not converge in norm to f.)

Exercise 12.5.7. Find an example to show that convergence in mea-
sure does not imply convergence in norm. Hint: the fi need not be
bounded.

Exercise 12.5.8. Suppose we choose the norm given by ||g|| =
∫
|g| dx.

Show that if the fi and f are uniformly bounded (i.e. −C 6 fi, f 6 C

for some C > 0), then convergence in measure implies convergence in
norm and convergence a.e.

Exercise 12.5.9. We will work with functions from the [0, 1] ⊂ R to
the real numbers R. Test functions φ, will be anything in the class
of infinitely differentiable functions from the closed unit interval to
the real numbers, Φ = C∞([0, 1]). Find an example of a sequence
of functions {fi}

∞
i=1 which converges to 0 nowhere, but which con-

verges weakly to f ≡ 0. I.e. limi→∞ fi(x) 6→ 0 for any x ∈ [0, 1], but
limi→∞

∫
[0,1]φfidx → 0 for all φ ∈ C∞([0, 1]) Hint: think traveling

waves ...

Exercise 12.5.10. (Look at all the possibilities!) Suppose we identify
each of the 5 bit binary numbers with a set of convergence types:
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fi →01101 (f ≡ 0) would be shorthand for the fact that fi converges to
the zero function a.e., in measure and weakly but not uniformly or in
norm. Is it possible to find sequences converging to zero for each of
the binary numbers? If not which ones are possible?

12.5.2 The Three Theorems

In the next three theorems and the examples that follow, we examine
the fact that while limits and integrals don’t always commute, we
can switch the order of integration and limit taking in many useful
cases. First though, we recall the definition of lim inf and lim sup from
Section 7.6 and then extend the notion to sequences of functions.

Definition 12.5.1 ((Reminder from Chapter 7) lim sup, lim inf for
Sequences in R). Suppose that {xi}∞i=1 ⊂ R. We define:

lim sup
i→∞

xi ≡ lim
m→∞

sup({xi}∞i=m) and

lim inf
i→∞

xi ≡ lim
m→∞

inf({xi}∞i=m).

In Chapter 7 this notion came up and went by pretty quickly. Here
is an exercise that has you convince yourself that lim inf and lim sup
always exist.

Exercise 12.5.11. (lim sup and lim inf, again) Suppose that f : N→ R.
Then the behavior of f as its argument approaches infinity can be
complicated. In particular, it might not approach a limit. If we think
visually about the sets Fn ≡ {f(i)|i > n}, we could imagine the smallest
closed interval containing Fn – call it In – and ask how In varies as
n→∞. Then lim inf f and lim sup f are the left and right endpoints of
the smallest interval in the range that “eventually” contains f. This
exercise makes that precise.

1 Show that Ii ⊃ Ii+1 for all i.
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2 Choose li and ri such that Ii = [li, ri]. Show that l∗ ≡ limi→∞ li and
r∗ ≡ limi→∞ ri both exist and that l∗ 6 r∗.

3 Suppose that l∗ = r∗. Show that limi→∞ f(i) exists and is equal to
l∗ = r∗.

4 Suppose that l∗ < r∗. Show that if l∗ < α < r∗, then for every n there
exists i > n such that f(i) > α and a j > n such that f(j) < α.

We call the l∗ the lim inf and r∗ the lim sup. By working through
the exercise, it becomes clear that the lim infi→∞ f and lim supi→∞ f
define the eventual envelope which contains the oscillations of f “at
infinity”.

Restating the definition of lim inf and lim sup using the notation used
in the last exercise, we get

Definition 12.5.2 (lim supi→∞ f(i) and lim infi→∞ f(i)). Suppose that
f : N→ R.

lim sup
i→∞

f ≡ lim
n→∞

(
sup
i>n

f(i)

)

lim inf
i→∞

f ≡ lim
n→∞

(
inf
i>n

f(i)

)

Now we extend this to sequences of functions.

Definition 12.5.3 (lim supi→∞ fi(x) and lim infi→∞ fi(x)). Suppose that
fi : X→ R for some measure space X. For a sequence of functions fi(x) we
define

lim inf
i→∞

fi

to be the pointwise limit,

l(x) = lim inf
i→∞

fi(x),

and we define
lim sup
i→∞

fi

306



12.5 modes of convergence and three theorems

to be the pointwise limit,

u(x) = lim sup
i→∞

fi(x).

Now we can state the three theorems:

Theorem 12.5.1 (Fatou’s Lemma).∫
lim inf
i→∞

fi dx 6 lim inf
i→∞

∫
fi dx.

Theorem 12.5.2 (Monotone Convergence Theorem). Suppose that {fi}
are all measurable and that 0 6 f1 6 ... 6 fi 6 fi+1 6 .... Then we have that

lim
i→∞

∫
fi dx =

∫
lim
i→∞

fi dx.

Theorem 12.5.3 (Dominated Convergence Theorem). If fi → f µ a.e.,
|fi|, |f| < g and

∫
g dx <∞, then∫

|fi − f| dx→ 0 as i→∞.

In all these theorems, all the functions are assumed to be measurable.

12.5.3 Proofs and Discussion of the Three Theorems

Traditionally, the monotone convergence theorem is shown and then
used to prove Fatou’s lemma, which is used to prove the dominated
convergence theorem. One can also prove Fatou and use that to
prove both the monotone convergence and dominated convergence
theorems. (See, for example, Evans and Gariepy’s proofs in Chapter
1 of [12].) We will prove the three theorems by first proving the
dominated convergence theorem and then use that theorem to prove
the monotone convergence theorem, which in turn will be used to
prove Fatou’s lemma.
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Proof of the Dominated Convergence Theorem.

1 First we define a new measure µg(E) ≡
∫
E g dx whenever E is µ-

measurable. For non-measurable F, we define µg(F) = inf{E|F⊂E}
∫
E g dx

where the E are of course measurable. Since g is µ-summable, we have
that µg(X) <∞. One can show that every µ-measurable set E is also
µg-measurable (see exercise 12.5.12).

2 Choose an ε > 0. Define En = {x||f(x) − f(xi)| < ε2g ∀ i > n}. We have
that the Ei is µ and therefore µg measurable for all i. We also have
that ...Ei−1 ⊂ Ei ⊂ Ei+1 for all i > 2. Since µg(X) < ∞, we have that
limi→∞ µg(X \ Ei) = 0.

3 Choose n big enough that µg(X \ Ei) 6 ε and conclude that∫
|f− fi| dx =

∫
X\En

|f− fi| dx+

∫
En

|f− fi| dx

6 2

∫
X\En

g dx+

∫
En

ε2g dx

6 2µg(X \ En) + ε

∫
2g dx

6 2ε+ ε2

∫
g dx

6 2ε(1+

∫
g dx).

Because ε is arbitrary, we have that
∫
|f− fi| dx→ 0 as i→∞.

Exercise 12.5.12. (Challenge) (Weighted Measures: µg from µ)

1 If µ is an outer measure, g > 0 and
∫
g dµ <∞, then we can define

µg(F) ≡ inf
(E µ-measurable , F⊂E)

∫
E

g dµ.

Prove that µg is an outer measure and that µ-measurability implies
µg-measurability.
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2 Give an example illustrating why µg-measurability does not imply
µ-measurability.

Note: The notation µ g is also used to denote µg.

Proof of Monotone Convergence Theorem.

1 Define g(x) = limi→∞ fi(x)

2 If
∫
g dx < ∞, use the dominated convergence theorem to get the

result.
3 Otherwise, because

∫
g dx =∞, we can find a simple function gC such

that gC 6 g everywhere and
∫
gC dx > C for any C <∞.

4 Define gC,K = min(gC,K). Choose ε > 0 and K big enough that∫
gC,Kdx > C− ε

2

5 Define En = {x|fi > (1− ε)gC ∀ i > n}. Choose n big enough that
µgC(X \ En) 6 ε

2K .
6 This implies that µgC,K(X \ En) 6 ε

2K .
7 We have that for i > n∫

gi dx >
∫
En

gi dx

>
∫
En

(1− ε)gC dx

>
∫
En

(1− ε)gC,K dx

= (1− ε)

∫
En

gC,K dx

= (1− ε)

(∫
X

gC,Kdx−

∫
X\En

gC,Kdx

)
> (1− ε)(C− ε).

Since ε is arbitrary and C is a big as we like, we have that
∫
gi dx→∫

g dx.
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Proof of Fatou’s Lemma.

1 Define hn(x) = infi>n fi(x). Note that lim infi→∞ fi = limi→∞ hi.
2 Note that

∫
hn dx 6

∫
fi dx for all i > n. We conclude that

∫
hn dx 6

lim infi→∞
∫
fi dx for all n.

3 This implies that

lim inf
i→∞

∫
fi dx > lim

n→∞

∫
hn dx

=

∫
lim
n→∞

hn dx (by the monotone convergence theorem)

=

∫
lim inf
n→∞

fn dx.

Remark 12.5.1. Using the fact that these three theorems can be proven in the
reverse order so that Fatou implies monotone implies dominated, we see that
they are in fact equivalent. In the usual path to the proofs of these theorems,
we do not need the fact that measurable functions can be used to create the
weighted measures we study in Exercise (12.5.12).

Remark 12.5.2. The dominated convergence theorem is really a finite mea-
sure “upstairs” thing. Let me explain. First, one can work in the domain of f
(the measure space) or the product space of the measure space and the range
(the real line), also known as the graph space. By working upstairs, I mean
working in the graph space, in the region above (or upstairs) the domain. If
we do that, we see that the region of the graph space between −g and g is
finite in measure and the dominated convergence theorem is really saying
that if all your messing around is done in a constrained, finite measure set,
essentially no misbehavior can result.
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Remark 12.5.3. Dominated convergence is used to get other switching
theorems: switching order of differentiation and summation or differentiation
and integration or integration and summation.

12.6 Area, Co-Area, and Sard’s Theorem

In this section, we state and discuss the meaning of four theorems that
we will not prove. (If you are interested in the proofs, I recommend
Evans and Gariepy [12].

12.6.1 Lipschitz Functions

Definition 12.6.1 (Lipschitz Functions). F : X→ Y is Lipschitz if there
is a positive number K > 0 such that |F(x) − F(y)| 6 K|x− y| for all x,y ∈ X.

Rademacher’s theorem tells us that a Lipschitz function is differen-
tiable almost everywhere!

Theorem 12.6.1 (Rademacher’s Theorem). If F : Rn → Rm is Lipschitz,
then the set of points at which it fails to be differentiable has Lebesgue measure
zero. I.e. F Lipschitz ⇒ F is differentiable almost everywhere.

It turns out that Lipschitz functions are nice enough for many pur-
poses. While differentiability everywhere generally makes proofs
easier, frequently, mere Lipschitz smoothness does not stand in the
way of deeper generalizations of theorems best known in their Ck

forms, for some k > 1.

12.6.2 Area and Coarea formulas

The behavior of integrals and volumes under mappings is the focus of
the next two highly useful results.
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First we consider Lipschitz maps F : Rn → Rm, with n 6 m. When n 6
m we define |JF| =

√
det(DFt ◦DF), where the t superscript indicates

transpose.

In this case we have:

Theorem 12.6.2 (Area Formula).∫
Ω

|JF|dHn =

∫
F(Ω)

H0(F−1(y)∩Ω)dHny.

When F : Rn → Rm is Lipschitz and n > m, we define |JF| =√
det(DF ◦DFt). In this case, we have:

Theorem 12.6.3 (Coarea Formula).∫
Ω

|JF|dHn =

∫
F(Ω)

Hn−m(F−1(y)∩Ω)dHmy.

We can add functions to get more general results:

Theorem 12.6.4 (Area Formula, version 2).∫
Ω

g(x)|JF|dHnx =

∫
F(Ω)

(∫
F−1(y)∩Ω

g(x)dH0x

)
dHny

and

Theorem 12.6.5 (Coarea Formula, version 2).∫
Ω

g(x)|JF|dHnx =

∫
F(Ω)

(∫
F−1(y)∩Ω

g(x)dHn−mx

)
dHmy.

While it is not hard to combine both of the second versions to get a
general area-coarea formula, there is little conceptual advantage to
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that, and here we are focusing on the conceptual understanding of
these two formulas. (The combined version can be found on page 341

of this book.)

Remark 12.6.1. Integrating over F(Ω) in each of the RHS’s of the above
formulas is redundant since we are always taking the intersection F−1(y)∩Ω.

At first these two results seem rather abstract, but in fact, you have
already used them before since they generalize the change of variables
formula you have seen for integrals in calculus. To really understand
these two formulas, we need to look at simple examples.

Example 12.6.1 (Integrating over Spheres and then Radii). Suppose
that we want to integrate a function over Rn by first integrating it over
a sphere centered on the origin and then integrating those results over the
various radii. Then we can use version 2 of the Coarea Formula and F = ||x||

together with the facts that ∇F = x
||x|| and |JF| = x

||x|| ·
x

||x|| = 1 for all x 6= 0
to get

∫
Ω

g(x)dHnx =

∫∞
0

(∫
∂B(0,r)∩Ω

g(x)dHn−1x

)
dH1r.

Example 12.6.2 (A Nonlinear Fubini’s Theorem). The example above of
integrating over spheres and then over radii is a special case of integration over
distance functions. If we let h(x) = d(x,K) where d(x,K) is the distance from
x to the set K, we have that the gradient of d is is a unit vector everywhere
except on the interior of K so the Jacobian |Jd| = 1 almost everywhere in Kc.
Our result is then:∫

Ω

g(x)dHn =

∫∞
0

(∫
{x|d(x,K)=r}∩Ω

g(x)dHn−1x

)
dH1r.

Example 12.6.3 (Area of Graphs). If we want to know the n-area (or
n-volume) of a graph of F : Rn → R1 over Ω ∈ Rn, then we are asking for
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the n-volume of the set {(x, F(x))|x ∈ Ω} ⊂ Rn+1. We define the mapping
F̂ : Rn → Rn+1 by F̂(x) = (x, F(x)). We get that

DF̂ =

[
In

∇F

]
,

where ∇F is the row vector of partial derivatives of F. We could compute√
det(DF̂t ◦DF̂) or we can use the fact that this is simply the n-volume of

the n columns and use the generalized Pythagorean theorem to compute this
from DF̂. That theorem says that the square of the n volume of this matrix is
equal to the sum of the squared determinants of the n+ 1, n×n submatrices.
When we compute this we get

√
1+∇F · ∇F. Another way to get this is to

change coordinates so that the gradient only has an xn component. Then

DF̂t ◦DF̂ =

[
In−1 v1

vt1 1+∇F · ∇F

]
,

where v1 is a column of n− 1, 0’s, and we get the same result. Finally, looking
at this purely geometrically, we can also get this result by noticing that the
area of a little piece of the graph is increased by exactly the ratio between
the hypotenuse of a triangle with horizontal 1, vertical side ||∇F|| and the
horizontal side length.

Remark 12.6.2 (Draw Some Pictures!). When I teach this, I always give
an intuitive explanation of both the area and coarea formulas using pictures.
You should try doing this for yourself! Try messing around with simple (i.e.
not very complex) functions mapping R2 to R to explore the co-area formula
and maps mapping R2 into R3 to explore the area formula. You can start by
working on Exercise 12.6.1.

Exercise 12.6.1. Imagine a function like a slightly skewed, broad Gaus-
sian in R2. See Figure 71. See if you can understand why the area
of the red strips in the first sub-figure of Figure 72 is the same as the
integral of the Jacobian over E, or Jacobian weighted area of E. Hint:
see Figure 73

314



12.6 area , co -area , and sard ’s theorem

Figure 71: Graph of a slightly skewed, broad Gaussian-like bump
function in R2.

12.6.3 Sard’s Theorem

It is clear that the measure of points in the domain where the rank
of a mapping is not full can be large. In fact, simply using the 0
mapping (i.e. map the entire domain to the origin in the range) gets
you a mapping whose rank is never full on the entire domain, this
non-full-rank set is large measured in the domain. But what about in
the range? What is the measure of the points in the range that come
from points in the domain where the rank is not full?

The answer is, not very much: to be more precise, the measure of that
set in the range is zero!

Theorem 12.6.6 (Sard’s Theorem). Suppose that F : Rn → Rm and that
F is Ck with k > max(0,n−m). Define C to be the set of points x ∈ Rn

such that rank(DFx) < m. Then Lm(F(C)) = 0.

This theorem is a technical tool, extensively used in analysis and
geometric analysis. It justifies the intuition that when the rank of
the derivative of a map F : Rn → Rm, m 6 n, is less than m, so that
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Figure 72: Explain why the area of the red strips, added together,
equals that area of E, weighted by the Jacobian – i.e. the integral of Jf
over E.
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Figure 73: Hint for Exercise 12.6.1: slicing through the graph in a
direction orthgonal to the leve sets, we get curves and can interpret
slopes using ∆dC = {spacing between level sets in domain} and ∆rC =
{spacing between level sets in the range}.

the derivative is not onto, then the mapping squeezes space down,
collapsing at least one dimension, yielding a measure zero set.

Most of the easier proof of this result when F ∈ C∞, is not very
enlightening, with the exception of the last part in which you show
that the measure of the image of Ck, the points where all partial
derivatives of order k and below, is zero. The argument uses Taylor’s
theorem to show that the image of a cover of Ck must be reduced
in volume to a volume that behaves like δk+1−

n
m where δ is the edge

length of a cubical grid that is going to zero as we choose finer and finer
discretizations. The first part of the proof is an inductive argument.
See chapter 3 of Milnor’s little book on differential topology for all the
details [31].

Remark 12.6.3. In the smooth case F ∈ Ck with k = ∞, it would appear
that we only need k+ 1 > n

m while in the case that we do not assume as
much smoothness, we need k > max(0,n −m). We should expect that
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max(0,n−m) + 1 > n
m . But when n 6 m the inequality is obvious. So we

assume n > m and define p = n−m. Then max(0,n−m) + 1 > n
m turns

into p+ 1 > p
m + 1 which is also crearly true for all m = 1, 2, 3, ....
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13
Other Tools for Nonlinear

Analysis

In this chapter, we look at three ideas important for nonlinear analysis,
after which we revisit the three integrals that connect the local and
global properties of nonlinear functions and mappings.

Solving F(x) = b , x , b ∈ Rn : the nonlinear version of Ax = b for A
an n×n matrix. The first step in solving a problem is to ensure that
there is a solution – to show existence. We will consider one such tool
that also gives us an iterative way to compute a solution: The Banach
Fixed Point Theorem.

Solving F(x) = b, x ∈ Rn ,b ∈ Rn−k , 1 6 k < n: the nonlinear version
of Ax = b for A an n× (n− k) matrix. Solutions are level sets of F,
with regular level sets being k-dimensional submanifolds of Rn. Solu-
tions of systems of nonlinear equations that define regular level sets is
intimately tied up with the notion of transverse intersections.

Solving minx F(x), for F : Rn → R: there are no non-trivial linear
analogs of this unconstrained minimization problem – the only inter-
esting linear optimization problems are interesting because they are
constrained, i.e. the search is restricted to E ⊂ Rn – minx∈E F(x). The
simplest class of interesting unconstrained optimization are those in
which F is a convex function. Thus we take a detailed look at convex
functions and their properties.

13.1 Banach Fixed Point Theorem

Many problems can be written as:
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Problem 13.1.1 (Finding Fixed Points). Given a mapping F from a space
X to itself, F : X→ X, find x∗ such that F(x∗) = x∗.

We will look at one theorem that gives the existence of unique fixed
points. First we review all the ideas, starting with vector norms,
leading to the idea of a Banach space.

Definition 13.1.1 (Vector Space Norm). Suppose that α ∈ R and x,y ∈ X,
X a vector space. Then a function from || · || : X → [0,∞) is a norm if it
satisfies:

1 ||x|| > 0 when x 6= 0
2 ||αx|| = |α|||x||

3 ||x+ y|| 6 ||x||+ ||y|| (the triangle inequality).

Definition 13.1.2 (Cauchy Sequence). Recall that xi ∈ X is Cauchy if for
any ε > 0 there is an N(ε) such that i, j > N(ε) implies that ||xi − xj|| < ε.

Definition 13.1.3 (Complete Space). If every Cauchy sequence in X has a
limit in X, then X is complete. I.e. if {xi}∞i=1 is Cauchy, then there must also
be a point x∗ ∈ X such that ||xi − x∗||→ 0 as i→∞.

Definition 13.1.4 (Banach Space). A complete, normed vector space is
called a Banach Space.

Mappings that are Lipschitz, with a Lipschitz constant strictly less
than 1 are called contractions:

Definition 13.1.5 (Contraction Mapping). A function from a normed
space X to itself is a contraction mapping if ||F(x) − F(y)|| < k||x− y|| for
some 0 6 k < 1.

Now we are ready to state the main theorem in this section:
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Theorem 13.1.1 (Banach Fixed Point Theorem ). Suppose that F : B→ B

is a contraction mapping from the Banach space B to itself. Then there is a
unique point x∗ such that F(x∗) = x∗.

Proof.
First note that if there are two distinct fixed points x∗ and y∗ then ||x∗−

y∗|| = ||F(x∗) − F(y∗)|| < k||x∗ − y∗|| with k < 1 which is a contradiction.
So there cannot be more than one fixed point. To prove that there is a
fixed point

1 Choose any x0 ∈ B and define x1 = F(x0), x2 = F(x1) = F(F(x0)) =

F2(x0) and likewise xn = Fn(x0).
2 We note that xi is a Cauchy sequence:

a ||Fi+1(x0) − F
i(x0)|| 6 ki||F(x0) − x0||

b for n > m

||xn − xm|| = ||Fn(x0) − F
m(x0)||

6

(
n−1∑
i=m

ki

)
||F(x0) − x0||

= km(

n−m−1∑
i=0

ki)||F(x0) − x0||

6 km(

∞∑
i=0

ki)||F(x0) − x0||

=
km

1− k
||F(x0) − x0||.

So, as long as n,m > N we have that

||Fn(x0) − F
m(x0)|| 6

kN

1− k
||F(x0) − x0|| →

N→∞
0

c Thus, {xi}∞i=1 is a Cauchy sequence.
3 Therefore, there is a point x∗ in B such that xi → x∗ as i→∞.
4 Since F is continuous, we have that

lim
i→∞

F(xi) = F( lim
i→∞

xi) = F(x
∗).
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But F(xi) = xi+1 so

lim
i→∞

F(xi) = lim
i→∞

xi+1 = x
∗.

Thus F(x∗) = x∗.

Here are some figures illustrating the Banach fixed point theorem
in the case that the Banach space is R. The first figure, Figure 74

shows an F such that its derivative is positive and strictly less than
one everywhere. The second, Figure 75 shows a contractive iteration
converging to the fixed point x∗. The Third figure, Figure 76 shows that
we can change the function away from where the iteration happens
and preserve iterations converging to the fixed point.

Figure 74: Contraction mapping with a single fixed point, x∗.

Exercise 13.1.1. Show that one can use the x = y line to quickly plot
the trajectory of a point under iteration by the formula xn = F(xn−1).
(See Figure 77.)
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Figure 75: Iteration to the fixed point from a starting point x0.

Figure 76: The iteration remains unchanged if we do not change the
function locally.
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Figure 77: Figure that shows the use of the x = y to quickly plot an
iteration. See Exercise 13.1.1.

Exercise 13.1.2. (Stability of Fixed Points) Let F : R→ R be a contin-
uously differentiable mapping with a fixed point x∗. (See Figure 78.)

1 Suppose that

−1 < F ′(x∗)(=
dF

dx
(x∗)) < 1.

Show that for some ε > 0, and any x ∈ (x∗ − ε, x∗ + ε) we have

|F(x) − x∗| = |F(x) − F(x∗)| < |x− x∗|.

We will call such a fixed point a stable fixed point.
2 Suppose that

1 < |F ′(x∗)|.

Show that for some ε > 0, and any x ∈ (x∗ − ε, x∗ + ε) we have

|F(x) − x∗| = |F(x) − F(x∗)| > |x− x∗|.

We will call such a fixed point an unstable fixed point.
3 What can you say about the case in which F ′(x∗) = 1? See if you can

find examples where (a) F(x∗) = x∗, F ′(x∗) = 1 and x∗ is a stable fixed
point and (b) F(x∗) = x∗, F ′(x∗) = 1 and x∗ is an unstable fixed point.
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Figure 78: The stability of the fixed points is determined by the slope
of the graph at the fixed point. See Exercise 13.1.2.

Exercise 13.1.3. Exercise 13.1.2 can be shown analytically and it can
be shown with a geometric argument. Assuming you only gave one
argument (say analytic or geometric) when you did Exercise 13.1.2,
provide the other of those proofs (resp. geometric or analytic).

Exercise 13.1.4. This exercise moves you to the continuous analogs of
the iterations studied above. It turns out that 1-dimensional iterations
can be very complex – the map xn = λxn−1(1− xn−1) can display truly
complex behavior and, for values of λ between 3 and 4, is used as a
model for chaos. In the case of flows in 1 space dimension, ẋ = F(x)

where F : R → R and ẋ ≡ dx
dt , the behavior is much simpler, though

still interesting. See Figure 79. By making plots similar to that shown
in Figure 79, explore the following questions: In each of these we will
be looking at some aspect of a continuous flow, ẋ = F(x).
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1 Suppose that x0 is a fixed point – F(x0) = 0.
a Use a Taylor’s expansion of F about x0,

F(x0 + h) = F(x0) + F
′(x0)h+

1

2
F ′′(x0)h

2 + ...

to show that for any η > 0 and a small enough ε, h ∈ [−ε, ε] implies
that

(F ′(x0) − η)h 6 ḣ 6 (F ′(x0) + η)h

from which we can conclude that h(t) lies between h(0)e(F ′(x0)−η)t

and h(0)e(F ′(x0)+η)t. Since η can be as small as you like, we say that
h(t) ≈ h(0)eF ′(x0)t (for the times t in which h(t) ∈ [−ε, ε]).

b Notice that, if we discretize time with very small steps ∆t then
locally, around x0, x(t+ ∆t) = eF

′(x0)∆tx(t) ... i.e. xn = F(xn−1)

where F(x) = eF ′(x0)∆tx. So that negative (resp, positive) derivatives
of F in a flow corresponds to slopes that are less than (resp. greater
than) 1 in the implicit iteration generated locally.

2 Suppose that F(x) = x2 + α. What can you say about the stability
of the fixed point at 0 as α changes from a negative number to a
positive number? Draw the bifurcation diagram. (To understand what a
bifurcation diagram is, see the example in Figure 80.)

3 Suppose that F(x) = x(x2 +α). What can you say about the stability of
the fixed point at 0 as α changes from a negative number to a positive
number? Draw the bifurcation diagram.

4 Suppose that F(x) = x3 − x+α. Draw the bifurcation diagram.
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Figure 79: Example of a flow in 1 (space, i.e. x) dimension, plotted in
3 dimensions to simultaneously show the statespace and the flow in
time.
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Figure 80: An example of the changes in fixed points as the param-
eter α changes. The resulting bifurcation diagram is an example of
something that can get very complicated in high dimensions.
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13.2 Transverse Intersections

Intersections of submanifolds of various dimensions are encountered
all the time; one can, for instance, look at Ax = b where A is an m×n
matrix, as a statement of a problem of finding a point (or all points) in
the intersection of m, n-1-dimensional subspaces of Rn. We are also
often interested in how stable our problem is to perturbations. What
can we say about some problem if we add a bit of noise, or jiggle some
parameters a tiny bit?

For these questions, the key concept is the idea of transverse intersec-
tion of subspaces.

Definition 13.2.1 (Transverse Intersection of Subspaces). Two sub-
spaces of Rn, Uk and Wm of dimension k and m respectively, are said to
intersect transversely if the span(Uk,Wm) = Rn.

This leads directly to the idea of transverse intersections of submani-
folds:

Definition 13.2.2 (Transverse Intersection of Submanifolds). Two sub-
manifolds of Rn, M and N, intersecting at x are said to intersect transversely
at x if the tangent spaces TxM and TxN intersect transversely as subspaces
of Rn, I.e. if span(TxM, TxN) = Rn.

Example 13.2.1 (2 Curves in R3). In R3, an intersection between 2, 1-
manifolds is never transverse.

Example 13.2.2 (A 1-Curve and a 2-Surface in R3). In R3, an intersec-
tion between a 2-dimensional surface and a 1-dimensional curve is transverse
if and only if the curve is not tangent to the surface at the point of intersection.

Example 13.2.3 (2 Arbitrary Submanifolds). If Mk and Np are k and
p dimensional submanifolds of H = Rn, then they intersect transversely
if in a neighborhood of the intersection point x ∈ Mk ∩Np, we have that
dim(Mk ∩Np) = dim(Mk) + dim(Np) − dim(H) = p+ k−n.
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Transverse intersections are stable: if we take an arbitrary intersection
between arbitrary compact submanifolds, then if it is not transverse it
can be made transverse using an arbitrarily small perturbation. If on
the other hand the intersection is transverse, then any perturbation of
small enough magnitude will not change that fact.

Exercise 13.2.1. Suppose that Mk and Np are k and p dimensional
submanifolds of H = Rn, Mk is a level set of a smooth map FM : Rn →
Rn−k and Np is a level set of a smooth map FN : Rn → Rn−p. Work
out the relationship of transversality of an intersection of Mk and Np
at x and the rank of the mapping F : Rn → R2n−p−k defined by

x ∈ Rn →

[
FM(x)

FN(x)

]
∈ R2n−k−p.

Exercise 13.2.2. Suppose that f1(x,y) ≡ y − x2 = α and f2(x,y) ≡
y− x = β.

1 Find the values of α and β such that there are intersections. Classify
the intersections as transverse or not.

2 Show that an intersection, defined by f1(x,y) = α0 and f2(x,y) = β0,
that is transverse, is stable. More precisely, use the implicit function
theorem to show that if f1(x0,y0) = α0 and f2(x0,y0) = β0 defines a
transverse intersection, then there is an ε > 0 such that, defining hx =

x− x0 and hy = y− y0, for |hx| < ε and |hy| < ε, there are gα(hx,hy)
and gβ(hx,hy) such that f1(x0 + hx,y0 + hy) = α0 + gα(hx,hy) and
f2(x0 + hx,y0 + hy) = β0 + gβ(hx,hy). Hint: consider the mapping
F : R4 → R2 defined by

F(x,y,α,β) =

[
f1(x,y) −α
f2(x,y) −β

]

at the point (x0,y0,α0,β0).
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13.3 Convex functions and Subgradients

Let f : Rn → R and E ⊂ Rn.

A function f is convex if f(α1x+α2y) 6 α1f(x) +α2f(y) for all αi > 0
satisfying α1 + α2 = 1 and a function f is strictly convex if f(α1x+
α2y) < α1f(x) +α2f(y) for αi > 0, i = 1, 2, also satisfying α1 +α2 = 1.

A set E is convex if for any two points x and y in the set, α1x+α2y is
also in the set for all αi > 0 satisfying α1 +α2 = 1. A set E is strictly
convex if, for x,y ∈ E, α1x+ α2y is in the interior of E when αi > 0
and α1 +α2 = 1.

The theory of convex sets and functions is a very rich subject. In
nonlinear analysis, these are the nicest sets and functions where every-
thing in sight behaves as it should. You will encounter some of this
good behavior in the exercises below.

In all the exercises in this section, (1) we assume E is closed and
convex and (2) the notation carries over from one exercise to the
next.

Exercise 13.3.1. Define d(x,E) ≡ infy∈E |x− y| where | · | is the usual
2-norm in Rn. Prove that if x is a point not in E, then there is a unique
closest point yx ∈ E.

Exercise 13.3.2. Denote the hyperplane through yx, orthogonal to
x− yx by hyx,x−yx . Let Hyx,x−yx denote the closed halfspace defined
by hyx,x−yx such that for which x− yx is an outward pointing normal
vector. Show that E lies entirely in the closed halfspace Hyx,x−yx . A
hyperplane that intersects the boundary of E and contains E in one of
the halfspaces it defines is called a supporting hyperplane. Hint: see
if you can prove that for y ∈ E, 〈y− yx, x− yx〉 is always non-positive.

Exercise 13.3.3. Prove that yx is the closet point in E to every point in
the ray x+α · (x− yx) ∀ α ∈ {R > 0}
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Definition 13.3.1 (Subgradient and Subdifferential). Let H be a Hilbert
space, f : H → R be a convex function and H(x) = 〈vp, x− p〉+ f(p) be a
supporting hyperplane at (p, f(p)). We refer to vp as a subgradient of f at
p and the set of subgradients of f at p, as the subdifferential of f at p.

Exercise 13.3.4. (Challenge) Show that the level sets of the distance
function, LE(c) ≡ {x|d(x,E) = c > 0}, have tangent planes at every point
of the level set. Show that those tangent planes are continuous with re-
spect to variation along the level set. Hint: if x ∈ LE(c) show that there
is a δ small enough that for w ∈ B(x, δ)∩ LE(c), ε 6 〈x− yx,w− x〉 6 0.

Exercise 13.3.5. (Challenge) Use Exercises (13.3.1-13.3.4) to show that
every point on the boundary of E has a supporting hyperplane through
it. Hint: if y ∈ bdy(E) and it is not the nearest point for some x ∈ LE(1),
then d(y,LE(1)) > 1 and since LE(1) is closed and {y} is compact, there
is a point x∗ ∈ LE(1) such that d(y,LE(1)) = |x∗ − y| > 1. Here you can
either

1 note that because E ⊂ Hyx∗ ,x∗−yx∗ conclude that d(x∗,E) > 1 which is
a contradiction, or

2 note that since y ∈ bdy(E) there is a sequence of points in {xi}
∞
i=1 ⊂ EC

converging to y. The sequence of points {yxi }
∞
i=1 ⊂ E (where yxi is

the unique closest points in E to xi) also converges to y. The points
yxi +

xi−yxi
|xi−yxi |

all lie on LE(1). Which, you then show is a contradiction.

Exercise 13.3.6. Suppose that f : R1 → R1 and f is convex. Show
that the left derivatives and right derivatives, f ′L(x) ≡ lim

y↑x
f(x)−f(y)
x−y

and f ′R(x) ≡ lim
y↓x

f(x)−f(y)
x−y , exist at each point in the domain and that

f ′L(x) = f ′R(x) = f ′(x) except when x ∈ J ⊂ R1, where J is at most
countably infinite.
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Definition 13.3.2 (Epigraph). The epigraph, Ef, of a function f : Rn → R

is given by

Ef ≡ {(x,y) ∈ Rn ×R | f(x) 6 y}.

These are just the points in the graph space on or above the graph of f.

Exercise 13.3.7. This exercise looks at the relationship between epigraphs
and convexity.

1 Show that f : R→ R is convex if and only if the epigraph Ef is convex.
Show this is still true if we allow functions to take on infinite values.
i.e. f : R1 → {R1 ∪+∞}

2 Suppose that f : D ⊂ R1 → R1 is convex and D is a closed (possibly
infinite) interval in R. Show that the epigraph Ef is closed and convex
in R2.

3 Show by an example of a convex function f : R1 → {R1 ∪+∞}, that
the previous conclusion can be false when f takes on the value +∞
somewhere.

Exercise 13.3.8. Assume that f ′(x∗) exists. Show that the tangent
line to f at x∗, {(x,y) | f ′(x∗)x+ (f(x∗) − f ′(x∗)x)}, is a supporting (1-
dimensional) hyperplane of the epigraph Ef at (x, f(x)).

Exercise 13.3.9. Suppose that Eα is convex for all α ∈ A, where A is an
arbitrary index set (not necessarily countable). Prove that E ≡

⋂
α∈A Eα

is convex.

Exercise 13.3.10. Prove that E =
⋂
x∈Ec Hyx,x−yx .

Exercise 13.3.11. Define fM(x) = supf∈F f(x) where F is a class of
uniformly bounded, convex functions, f : [a,b] → R and [a,b] is a
bounded interval. Show that FM is a convex function. Hint: What is
the relationship between the epigraphs if the f’s in F and the epigraph
of FM.
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Exercise 13.3.12. The uniformly bounded condition in Exercise 13.3.11

is not actually necessary, but we assumed it to avoid dealing with
functions that take on the value +∞. Now we allow infinite values.
Such functions take on values in the extended reals, f : R→ R̄ where
R̄ = {R∪ {−∞,∞}}. Prove that f is convex if and only if the epigraph
is convex in R2. Note: the epigraph is still {(x,y) | f(x) 6 y <∞} ⊂ R2.
Define fM(x) = supf∈F f(x), where F is any class of convex functions
f : R1 → R1. Prove that FM is convex.

Exercise 13.3.13. A function f is said to be concave if -f is convex and is
said to be strictly concave if -f is strictly convex. Prove that f is concave
if f(α1x+α2y) > α1f(x) +α2f(y) for all α1,α2 > 0 and α1 +α2 = 1.

Exercise 13.3.14. Let E be a bounded, closed, convex subset of R2.
Let D be the projection of E onto the x-axis. Define fE : D → R by
fE(x) = H1({{x}×R}∩ E). Show that fE is concave.

Exercise 13.3.15. Prove that every line through (x, f(x)) with slopes
ranging from fL(x) to fR(x) are supporting lines for f at (x, f(x)).

Exercise 13.3.16. Let Hf be the collection of supporting lines of the
convex function f. Show that f(x) = sup

h∈Hf
h(x). Consequently, the

epigraph of f is the intersection of the upper half-planes defined by
the supporting lines.

Exercise 13.3.17. Let f ∈ C2(R1, R1) and suppose that f ′′(x) > 0 for
all x ∈ R. Show that f is convex. Hint: consider g(x) = f(x) − f(x∗) −
f ′(x∗)(x− x∗) and use what you know about Taylor series to compute
g(x).

Exercise 13.3.18. Suppose that f ∈ C2(R1, R1) and f is convex. Show
that f ′′(x) > 0 for all x ∈ R.

Exercise 13.3.19. Let f,g ∈ C2(R1, R1) be convex. Assume also that f
and g are (a) non-negative and (b) have derivatives whose signs always
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13.3 convex functions and subgradients

agree. Prove that w ≡ fg is also convex. Give examples to demonstrate
why conditions (a) and (b) are both necessary.

Exercise 13.3.20. Suppose f : Rn → R1 is convex. Show that the
sublevel sets Sf(c) ≡ {x ∈ Rn | f(x) 6 c} are convex. Give an example
of a non-convex function g whose sublevel sets Sg(c) are all convex.

Exercise 13.3.21. Suppose that f : R2 → R. If f(x) → ∞ as |x| → ∞,
then we say f is coercive. To be completely clear, we mean that for
every c > 0, there exists an N > 0 such that |x| > N implies f(x) > c.
Prove that a coercive, convex function f has a minimal value fm and
that the set M ≡ {x | f(x) = fm} is convex. Hint: choose a closed ball
B̄(0,C) = {x | |x| 6 C} big enough that f(x) > 2(|f(0)|+ 1) for x ∈ B̄(0,C)c

and use the fact that B̄(0,C) is a compact set.

Exercise 13.3.22. Give an example of a convex function that does not
have a minimal value.

Definition 13.3.3 (Directionally Coercive). Suppose that X is a normed
linear space. We will say that f : X→ R is directionally coercive if, for all
v ∈ ∂B(0, 1) ⊂ X, f(sv) →

s→∞
∞.

Exercise 13.3.23. (Challenge) Give an example f : R2 → R1 that is
continuous and directionally coercive but not coercive.

Exercise 13.3.24. Prove that when f : Rn → R is convex, directionally
coercive implies coercive. Hint: suppose that f is directionally coercive
and (without loss of genreality) f(0) = 0. For any C > 0 define

RC(v) = sup{r|f(rv) 6 C}

i.e. f(RC(v)v) = C and f(rv) > C for all r > RC(v). Now, suppose f is
not coercive so that, for some 0 < C <∞, sup

v∈∂B(0,1)
RC(v) =∞. Because

∂B(0, 1) is compact, there is a v∗ that is the limit of vi’s such that R(vi)
diverges as i → ∞. Use the convexity of f(svi) in s for each vi to
conclude f(svi) 6 C for s 6 RC(vi). Use this, and the continuity of f, to
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prove that f(sv∗) 6 C for all s > 0, implying that f is not directionally
coercive, which is a contradition.

Exercise 13.3.25. Show that a coercive, strictly convex function has a
unique minimizer x∗ such that f(x∗) < f(x) for all x 6= x∗.

Exercise 13.3.26. (Challenge) Suppose that f : x ∈ Rn → y ∈ R1 is
convex, f ∈ C1(Rn, R1) and f is minimal at x∗. Prove the hyperplane
y = 〈0, x〉+ f(x∗) is a supporting hyperplane of the function at (x, f(x∗)).
Show that y = h(x) = 〈∇f(z), x− z〉+ f(z) is a supporting hyperplane
at (z, f(z)). Use the fact that f is convex to conclude that if x is not
(globally!) minimal, then ∇f 6= 0.

Exercise 13.3.27. (Challenge) Even though Exercise 13.3.26 implies
that gradient descent cannot converge unless we are converging to a
minimizer, we are not guaranteed we are converging very fast. Create
C1, strictly convex f’s with unique minimizers at x = 0, such that
the time it takes to descend the gradient (i.e. follow evolution in the
domain specified by the differential equation ẋ(t) = −f ′(x)) from x = 1

to x = 0 is any T 6∞. Hint: consider f(x) = |x|α.

Exercise 13.3.28. Define f∗, the Legendre-Fenchel transform of f, by

f∗(k) ≡ sup
x∈Rn

(〈k, x〉− f(x)) ,

where k is in the dual space to Rn which we have identified, via
the inner product with Rn. In other words, k lives in the space of
gradients. Transforming again,

f∗∗(x) ≡ sup
k∈Rn

(〈k, x〉− f∗(k))

where now x is in the double dual to Rn which is just Rn. Prove that if
f : Rn → R1 is convex, then f∗∗ = f. Hint: note that h(x) ≡ 〈k, x〉− f∗(k)
is a supporting plane for the function f. Note: f* frequently attains
infinite values.

Exercise 13.3.29. Assume f : R1 → R1. Compute f∗ and f∗∗ when:
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13.4 . . . and the three integrals in section 11 .5 , again

1 f(x) = |x|

2 f(x) = x2

3 f(x) =


∞ x < −1

0 −1 6 x 6 1
∞ 1 < x

.

Exercise 13.3.30. Prove that f∗∗ is always convex even if f is not.

13.4 ... And the Three Integrals in Section 11.5, Again

We began with a very simple smooth function f : R → R (see Fig-
ure 81) which we probed with three integrals, the generalizations

0 1x-axis

y = f(x)

y-axis

0

1

ŷ

Figure 81: The level set Xŷ has 7 elements, shown as 7 blue dots in this
figure. Same figure can be used to illustrate each of the three integrals.

of which turned out to be important tools for nonlinear, geometric
analysis ...
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Degree Theor y

∫1
0

∑
x∈Xy

sign(
df

dx
(x)) dy = oriented length of f([0,1]) with cancellation

→ special case of degree theory

→ brought up Sard’s Theorem for us.

Remark 13.4.1. Again, the integral immediately above need only be over the
set f([0, 1]) but because f([0, 1]) ⊂ [0, 1], integrating from 0 to 1 works.

Area/Coarea∫1
0

∣∣∣∣dfdx(y)
∣∣∣∣ dx = length of f([0,1]) with multiplicities

→ special case of area and coarea formulas.

Stokes Theorem∫1
0

df

dx
(y) dx = f(1) − f(0) = oriented length of f([0,1]) with cancellation

→ simple case of divergence theorem

→ which is itself a simple case of Stokes Theorem.

The first integral gets us thinking about regular values and regular
level sets which leads to a bunch of cool stuff:

Regular Values of Mappings Rn → Rm

rank(Dyf) = min(n,m) ∀ y ∈ Xc
→ Sard’s Theorem also comes up

→ Which brings up the 5R covering theorem

→ Which becomes a good place to begin looking at outer measures.
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13.4 . . . and the three integrals in section 11 .5 , again

Regular Level sets Rn → Rm

(B(y, ε)∩ {y+ Vy}∩ E) ∼ (B(y, ε)∩Xc) ∀ y ∈ Xc
→ Really the same idea as Derivative = linear approximation

→ Introduces Manifolds.

Regular Value implies Regular level set Rn → Rm(
B(y, ε)∩ {y+Dyf−1(0)}∩ E

)
∼ (B(y, ε)∩Xc) ∀ y ∈ Xc

→ Level sets corresponding to Regular values = manifolds.

The second integral formula introduces the area and coarea formu-
las. You have seen a bit more of this now. These generalize to rather
wild functions and sets. The third is a special (and very simple) case
of Stokes Theorem.

Area/Coarea For mulas: f : Rn → Rm∫
Ω

g(x)J∗fdx =

∫
f(Ω)

(∫
f−1(w)

g(x)dHmax(n−m,0)(x)

)
dHmin(n.m)(w)

... where the Jacobian J∗f ≡

{ √
Dft ◦Df n < m√
Df ◦Dft n > m

→ a very powerful general tool for tracking and computing mapped volumes

→ We encounter outer measures and Hausdorff measures in earnest here!

Stokes Theorem – Briefly∫
∂Ω

ω =

∫
Ω

dω (Stokes Theorem)

→
∫
∂Ω

v · ~n dσ =

∫
Ω

∇ · v dx (Divergence Theorem)

→
∮
∂Ω

~v · T∂Ω =

∫
Ω

∇×~v dx (Little Stokes Theorem).
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Exercise 13.4.1. Spend time thinking about the three integrals and the
generalizations indicated in the comments on the integrals.

1 Find a presentation of Stokes theorem for differential forms and how
it connects with the divergence theorem and the theorem about in-
tegrating the curl of a vector field being the same as integrating the
vector field around the boundary (this is often also known as Stokes
theorem). Both of these familiar theorems from vector calculus are
actually special cases of the Stokes theorem for differential forms.

2 Read Chapter 3 of Frank Morgan’s book Geometric Measure Theory: a
Beginner’s Guide [32] to get a feeling for the proofs of the area and
coarea formulas, and then see Evans and Gariepy [12] for more detailed
proofs if you are interested.
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14
Derivatives , Again , Measure

Theoretically

The first section reviews the classical definition and the second recalls
derivatives as linear approximation as a launching point to a very
geometric measure theoretical way of looking at derivatives. The
remaining sections significantly expand our previous explorations
using measure theoretic tools.

14.1 Secants and Derivatives

The derivative that is encountered for the first time in calculus is
defined as the limit of a ratio of the "rise" over "run" of the graph of a
function. For y = f(x), this becomes

df

dx
(a) = lim

x→a

f(x) − f(a)

x− a
.

This is visualized as the slope of the secant lines approaching a limit –
the slope of the tangent line – as the free ends of those lines approach
(a, f(a)). Figure 82 illustrates this.
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Tangent line L

Function f(x)

Secant Lines

a

f(a)

Figure 82: The traditional definition of the derivative.

14.2 The Derivative as an Approximation

The derivative as La, the optimal linear approximation to f at a, is
another, very useful way to think about the derivative. Here, we focus
on the fact that the tangent line at (a, f(a)) approximates the graph of
f(x) at (a, f(a)) as we zoom in on the graph. More precisely, writing
x = h+ a,

f(x) = f(h+ a) = f(a) + La(h) + g(h)h,

where La is linear in h, g(h) → 0 as h → 0, and the tangent line L is
the graph of the function y = f(a) + La(x− a) .

Exercise 14.2.1. Use the facts that (1) linear La : R→ R have the form
h → sh, s a scalar, and (2) g(h) → 0 as h → 0, to rearrange this last
equation for f(x) into the original definition of a derivative.

Using the equation above to get

|f(x) − (f(a) + La(x− a))| 6

(
sup

|s|∈[0,ε]
|g(s)|

)
|h| for h ∈ [−ε, ε],

344



14.2 the derivative as an approximation

we obtain the nice geometric interpretation illustrated in Figure 83. The

ε1

ε2

ε-Balls, zooming in on (a, f(a))

Tangent line L

Function f(x)
f(a)

Cones containing f(x) and L

a

Figure 83: As we zoom into a point of differentiability, the graph is
contained in cones that get thinner.

figure illustrates the fact that the graph of f(x) lies in cones centered on
L, whose angular widths go to zero as we restrict ourselves to smaller
and smaller ε-balls centered on (a, f(a)). Inside the ε1-ball, the graph
stays in the wider cone, while in the smaller, ε2-ball the graph stays in
the narrower cone.

Let’s restate this. Defining

• p ≡ (a, f(a)),
• B(ε) to be the ball of radius ε centered on p,
• F ≡ {(x,y)|y = f(x)},
• CL(p, ε) to be the smallest closed cone, symmetrically centered on L,

with vertex at p such that F∩B(ε) ⊂ CL(p, ε), and
• θ(ε) to be the angular width of CL(p, ε),
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we have that f is differentiable at a ⇔ θ(ε) → 0 as ε → 0. Figure 84

illustrates this.

ε

{(x,y)|y = f(x)}

θ(ε)

CL(p, ε)

B(ε)

p

Figure 84: f is differentiable at a⇔ θ(ε)→ 0 as ε→ 0.

Exercise 14.2.2. Provide the missing details taking us from the above
inequality bounding the deviation from linearity to the above state-
ment that {f is differentiable at a⇔ θ(ε)→ 0 as ε→ 0} using the facts
that (1) the above inequality defines cones that are almost symmetric
about L and (2) the ε-ball centered at p is contained in the vertical strip
(x− a,y− f(a)) ∈ [−ε, ε]× (−∞,∞).

With this shift to a geometric perspective, we are now in a position
to take a step in the direction of geometric measure theory. Note that
in our definition the cones contain all of the graph as they narrow
down and we zoom in. What if instead of the cones converging to a
line, we converge to two or three lines, or that we converge to a cone
that does not narrow, or two cones that do not narrow? Then we are
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14.3 tangent cones

interested in the general tangent cone, a special case of which is the
usual tangent line. Alternatively, what if all we know is that a larger
and larger fraction of the graph is in a narrower and narrower cone as
we zoom into p? That is precisely the idea that approximate tangent
lines capture. We now turn to the first idea, the tangent cone.

14.3 Tangent Cones

The tangent line discussed above is also the tangent cone. The tangent
cone of a set in Rn can have any dimension from 1 to n. For nicely be-
haved k-dimensional sets, the tangent cone will also be k-dimensional.
In the case of the usual derivative of functions from R to R, we are
working in the graph space R2 with 1-dimensional sets. Moving to
tangent cones, we can approximate one dimensional sets which are
not graphs or, more generally, arbitrary subsets of Rn.

We now build up to a definition of the tangent cone of F ⊂ Rn at
p. Begin by translating F by −p. (This moves p to 0.) Define F(ε) ≡
(F∩B(ε)) \ p. Use a projection center at 0 to project the translated F(ε)
onto the sphere of radius 1. Take the closure of the resulting subset of
the 1-sphere. Finally take the cone over this set. Call this set Tεp (F) (We
will sometimes refer to this as the tangent cone at scale ε). Putting all
this together,

Tεp (F) = {R > 0}(Closure(∪x∈F(ε)
x− p

|x− p|
))

where the cone over E, [{R > 0} E], is the union of all possible non-
negative scalings of all points in E, i.e. the union of rays from the
origin through points in E. Now the tangent cone of F at p is the
intersection of Tεp (F) at any sequence of εi’s going to zero; εi = 1

i will
do. Thus the tangent cone of F at p, Tp(F) is given by:

Tp(F) =
⋂
i

T
1
i
p (F).

Summarizing, we get:
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ε

P

Tεp (F)

Tεp (F)

F(ε)

Figure 85: As we zoom in, the tangent cone at scale ε, Tεp (F), converges
to the tangent line through p.

Definition 14.3.1 (Tangent Cone). The tangent cone of F at p is given by

Tp(F) =
⋂
i

T
1
i
p (F).

where Tεp (F) is given by

Tεp (F) = {R > 0}(Closure(∪x∈F(ε)
x− p

|x− p|
)).

In the case of a differentiable function f : R→ R, this tangent cone is
the usual 1-dimensional tangent line. Figure 85 illustrates this.

Remark 14.3.1. The tangent cone is centered on the origin, 0, but I will be
plotting it as though it were centered on p. Similarly, the tangent lines will
sometimes be thought of as linear subspaces (i.e. centered on the origin 0) and
at other times, as the shift of that linear subspace to p.

If the curve we are considering does not have a derivative at p, then
we can get tangent cones that are not lines. Figure 86 illustrates an
example of this. The function generating the cone in the figure keeps
oscillating between the upper and lower lines as we zoom into p.
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ε

p

Figure 86: The tangent cone of the blue curve at the point p is shown
in red and does not narrow down to a line as ε→ 0.
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Exercise 14.3.1. Construct an concrete example of a function that has
a tangent cone like the tangent cone shown in Figure 86.

Exercise 14.3.2. Come up with examples of one dimensional sets
F ⊂ R2 whose tangent cone at p, Tp(F), are:

• Two lines passing through p,
• An infinite number of lines passing through p, yet not equaling all of

R2

• one convex cone with vertex at p.
• a line through p and a convex cone with vertex at p, intersecting the

line only at p.

Pick F’s so that F 6= Tp(F). Can you find four 0-dimensional F’s yielding
the same four tangent cones?

Exercise 14.3.3. Show that any E ⊂ R2 such that H0(E) <∞ has empty
tangent cones at every point in R2.

14.4 Approximate Tangent Cones

14.4.1 Densities

Now we need θk(F,p), the k-dimensional density of F at p. Let ω(k) be
the volume of the unit ball in Rk when k is an integer, and something
that interpolates sensibly otherwise. (See Definition 12.3.6 on page
285). Choose some measure µ. (Typically this will be k-dimensional
Hausdorff measure, Hk, restricted to some set, possibly with some
weight function). Now, θk(F,p) is given by

θk(F,p) = lim
ε→0

µ(F∩B(ε))
ω(k)εk

when this limit exists. When the limit does not exist, we work with
the lim sup and lim inf of the right hand side which are called upper
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14.4 approximate tangent cones

and lower densities of F at p and are denoted by θ∗k(F,p) and θk∗ (F,p)
respectively. (See Chapter 15 for a somewhat more detailed look at
densities and their uses.)

14.4.2 Using Densities to get Approximate Tangents

We now define the approximate tangent cone at p of F to be the
intersection of closed cones whose complements intersected with F
have density zero at p,

Definition 14.4.1 (approximate tangent cone at p of F). The approximate
tangent cone of F at p, T̃p(F) is given by

T̃p(F) =
⋂{

closed cones C with vertex p | θk((Rn \C)∩ F,p) = 0
}

.

Originally (in this section), we were aiming at having a definition of
approximate tangent line that was invariant to (small) pieces of the
set F outside the sequence of cones, provided those pieces got small
enough, quick enough. Now we can make that more precise. We want
a definition of approximate tangent line that ignores such excursions
of F provided these excursions have density zero at p.

Rather anti-climatically then, here is the definition we have been
waiting for (though you might have already guessed it!).

Definition 14.4.2 (Approximate Tangent Line). A 1-dimensional set has
an approximate tangent line at p when the approximate tangent cone is equal
to a line through p.

When the 1-dimensional set is an embedded differentiable curve, the
tangent line and the approximate tangent line are the same.

Remark 14.4.1. In general, when we are dealing with k-dimensional sets in
Rn, we will get approximate tangent k-planes. That is because most things
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we deal with will be rectifiable sets having approximate tangent k-planes
Hk almost everywhere. Rectifiable sets are introduced in Chapter 15.

Exercise 14.4.1. Can you create examples of one dimensional sets
which have a (density based) approximate tangent line at p but not
the usual tangent line at p?

Exercise 14.4.2. Prove that a tangent line to a continuous curve is also
the (density based) approximate tangent line at p.

14.5 Weak Tangents

There is different version of approximate tangent k-plane based on
integration. We will call these tangents, weak tangents.

We start with the fact that we can integrate functions defined on Rn

over k-dimensional sets using k-dimensional measures µ (typically
Hk). We zoom in on the point p, through dilation of the set F:

Fρ(p) = {x ∈ Rn| x =
y− p

ρ
+ p for some y ∈ F}.

Definition 14.5.1 (weak tangent k-plane). The k-dimensional subspace of
Rn, L, is the weak tangent k-plane of F at p if Fρ(p) converges weakly to L:
i.e. if ∫

Fρ

φ dµ →
ρ→0

∫
L

φ dµ

for all continuously differentiable, compactly supported φ : Rn → R.

In Figure 87, we illustrate this for the case of 1-planes (i.e. lines) in the
top illustration, L is the weak limit of the dilations of F, while in the
bottom it is not.

Exercise 14.5.1. Can you create an example of a one dimensional curve
in R2 which has the usual tangent line at p but does not have a weak
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p

F0.4

F

L

φ

F0.1

F0.02

p

F0.4

F

L

F0.1

F0.02φ

Figure 87: Illustration of a line that is (top) and a line that is not
(bottom) the weak tangent. The solid green lines are the level sets of φ
while the dashed green line indicates the boundary of the support of
φ. Note also that the ρ’s of 0.4, 0.1, and 0.02 are approximate. 353
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tangent line at p? Hint: such examples exist and depend on the fact
that H1 of a set that looks thin locally, can be as large as you like! You
might start by restricting yourself to the region between y = x2 and
y = −x2 and creating a curve in that region, focusing on the tangent
structure at (0, 0).

14.6 More Exercises

Exercise 14.6.1. Let E be the set of all points in the unit square [0, 1]×
[0, 1] with rational coordinates.

• Find all possible tangent cones generated by E.
• Find all possible approximate tangent cones generated by E and the

measure µ = L2 (2-dimensional Lebesgue measure).

Note: Though the point p at which you compute Tp(E) or T̃p(E) need
not be in E for these tangent cones to be non-empty, if p 6∈ clos(E),
then the tangent cone at p and the approximate tangent cone at p are
both empty (why?) and so you need only consider points in clos(E),
the closure of E.

Exercise 14.6.2. Suppose E is a spiral that spirals around an infinite
number of times as it spirals into the origin in R2.

• What is the tangent cone at p = (0, 0)?
• What is the approximate tangent cone at p = (0, 0) using the measure
µ = L2?

• What is the approximate tangent cone at p = (0, 0) using the measure
µ = H1 (1-dimensional Hausdorff Measure)?

• What can you say about the tangent cones and approximate tangent
cones at all other p 6= (0, 0)?
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15
From Nonlinear to Nonsmooth :

An invitation to Geometric

Measure Theory

15.1 Lipschitz Functions and Rectifiable Sets

As might be surmised from a quick look at the table of contents,
derivatives form a major thread in this book. In Chapter 14 we viewed
derivatives as approximating sets obtained by zooming in on the set
at some point. In this chapter, we continue the exploration of the
many ways derivatives, in one form or another, are doors to all sorts
of ideas in analysis and geometric analysis. We begin by looking
at Lipschitz functions, and the sets that can be constructed using
Lipschitz functions. Some of the proofs or outlines of proofs are
included but several are not and for those, I refer the reader to Evans
and Gariepy [12] and Morgan [32].

The last section of the chapter is an invitation to geometric measure
theory that flows rather naturally from the first part of the chapter on
non-smooth functions and sets.

15.1.1 Lipschitz Functions

Recall from Section 4.4 that we define a Lipschitz mapping f : Rm → Rn

to be one that does not expand space too much: that is,

|f(x) − f(y)| 6 K |x− y|

where K < ∞ is some constant independent of x and y. Graphs
of Lipschitz functions can have corners, but not cusps. Figure 88

illustrates a Lipschitz function with a Lipschitz constant of 1.

Lipschitz functions seem like they can have a lot less regularity than
C1 functions. And, in fact, one can define a Lipschitz mapping g :
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measure theory

Figure 88: A function satisfying the Lipschitz condition for any K > 1.

[0, 1] ⊂ R → [0, 1] that does not have a derivative on a set which is
dense in [0, 1] – for example [0, 1]∩Q. See exercise 15.1.1.

Exercise 15.1.1. Define gn(x) =
∫x
0 hn(t) dt where

hn(t) ≡

{
1 for x ∈ ( 2k2·3n , 2k+12·3n ]

−1 for x ∈ (2k+12·3n , 2k+22·3n ]
k = 0, ..., 3n − 1.

1 Show that

f(x) ≡
∞∑
i=1

2−igi(x)

(a) is Lipschitz with Lipschitz constant 1 and (b) has no derivative at
each point in the dense set ∪∞n=1{x | gn is not differentiable at x}

2 (Challenge) Now play with functions of the form

fα̂(x) ≡
∞∑
i=1

αigi(x)

with
α̂ = (α1,α2, ...) and αi > 0 ∀i
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15.1 lipschitz functions and rectifiable sets

to get functions whose points of non-differentiability are dense in [0, 1].
Hint: show that α̂ = (α1,α2, ...) yields a Lipschitz function whose
points of non-differentiability are dense in [0, 1] if and only if αi 6= 0
for an infinite number of i’s and

∑∞
i=1 αi <∞. (Keep in mind that we

assume the αi’s are all non-negative.)

But, we also have the following theorem that says Lipschitz functions
are differentiable everywhere except a set whose Lebesgue measure is
zero. Reminding ourselves of the definition of almost everywhere,

Definition 15.1.1 (Almost Everywhere). A property is said to hold almost
everywhere or µ-almost everywhere if the property fails on a subset E ⊂ Rn

having measure zero: µ(E) = 0,

we are prepared for Rademacher’s theorem.

Theorem 15.1.1 (Rademacher). Suppose that f : Rn → R is Lipschitz.
Then f is differentiable Ln almost everywhere in Rn.

Proof. See Chapter 3 of Evans and Gariepy [12].

15.1.1.1 Exercises on Lipschitz Functions

Definition 15.1.2 (Approximate Continuity). We say that f is approxi-
mately continuous at x, with respect to the measure µ, if, for any ε > 0,

lim
r→0

µ({y | |f(y) − f(x)| > ε})

µ(B(x, r))
= 0.

Exercise 15.1.2. (Challenge) Suppose that the absolute value of f :

[0, 1] → R is bounded by C (i.e. |f| 6 C) and Lebesgue measurable.
Show that g(x) ≡

∫x
0 f(t)dt is Lipschitz with Lipschitz constant C.

Using the fact that measurable functions are approximately continuous,
show that g is differentiable almost everywhere. (The point of this
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exercise is to prove Rademacher for a restricted set of functions. The
more general proof is more involved of course.)Hint: prove it first for
the case in which f is continuous.

Theorem 15.1.2 (C1 Approximation). Suppose that f : Rn → R is Lips-
chitz, µ is n-dimensional Lebesgue measure on Rn and ε > 0. Then there is
a C1 function g : Rn → R such that

µ {x|f(x) 6= g(x) or Df(x) 6= Dg(x)} < ε.

We also have that |Dg(x)| 6 C(n)Lip(f) for all x ∈ Rn, where Lip(f) is the
Lipschitz constant of f and C(n) is a constant that depends only on n.

See Chapter 6 of [12] for a proof.

Exercise 15.1.3. Suppose that F = f(E) where f is Lipschitz, f : E ⊂
Rk → Rn, and k 6 n. Use Theorem 15.1.2 to show that F can be
expressed as the union of a set E0 with k-dim Hausdorff measure zero
plus a countable union of pieces of images of C1 maps gi : Rk → Rn,
Ei ⊂ gi(Rk): F = {

⋃
i Ei}∪ E0.

Exercise 15.1.4. Think about the following questions.

1 We already know from exercise 15.1.1 that a Lipschitz function can
have an infinite number of corners. Can it have an uncountably infinite
set of non-differentiable points?

2 What can the graph of a Lipschitz function look like? What can image
of a Lipschitz function look like? (What is the difference?)

Exercise 15.1.5. Suppose that f is Lipschitz with Lipschitz constant K
(i.e. |f(x) − f(x)| 6 K|x− y|). Prove that Hs(f(E)) 6 KsHs(E). Use this to
show that orthogonal projections P in Rn cannot increase the measure
of a set. I.e. Hs(P(E)) 6 Hs(E). Recall that by choosing coordinates to
your advantage, you can always think of an orthogonal projection to
be the map taking (x1, x2, ..., xk, xk+1, ..., xn) to (x1, x2, ..., xk, 0, ..., 0) for
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some k, that is it is equivalent to setting the last n− k coordinates to
zero.

15.1.2 Rectifiable Sets

Now we are ready to define rectifiable sets which are capable of a lot
of craziness (for example, all the sets in the figure in Section 4.1 are
rectifiable), and yet are also quite nice, locally, measure-theoretically. In
fact, they are nice enough that you can do analysis on them as though
they were smooth, though this often requires nuanced reasoning.

15.1.2.1 Definitions

Definition 15.1.3 (Rectifiable). A set E ⊂ Rn is k-rectifiable if there are
Lipschitz {fi}

∞
i=1, fi : Rk → Rn such that

E ⊂ {
⋃
i

fi(R
k)}∪N0.

where N0 ⊂ Rn (called the null set) satisfies Hk(N0) = 0.

Here are two theorems that yield alternative, equivalent definitions.

Theorem 15.1.3 (Rectifiable sets as subsets of C1 submanifolds). E is a
k-rectifiable subset of Rn if and only if it can be represented as a countable
union of pieces of embedded C1 k-dimensional submanifolds Mi ⊂ Rn plus
a set with k-dimensional measure 0. More succinctly,

Hk

(
E \
⋃
i

Mi

)
= 0.

Exercise 15.1.6. Show that if, in Theorem 15.1.3 we define Ei ≡Mi ∩ E
we can choose Êi such that (1) Êi ⊂ Ei for all i, (2) Êi ∩ Êj = ∅ whenever
i 6= j, i.e.they are pairwise disjoint, and (3) Hk(E \∪iÊi). Hint: all you
need is the statement of the theorem and a bit of set manipulation
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to prove this. Note that some of the Êi may be empty if there are
superfluous Mi.

Definition 15.1.4 (Lipschitz Graph). A set E ⊂ Rn is k-dimensional
Lipschitz Graph in Rn if it is a subset of a (possibly translated and rotated)
graph of some Lipschitz f : Rk → Rn−r.

Theorem 15.1.4 (Rectifiable sets are unions of Lipschitz graphs). E is
a k-rectifiable subset of Rn if and only if almost all of E is contained in a
countable union of k-dimensional Lipschitz graphs {Wi}

∞
i=1,

Hk

(
E \
⋃
i

Wi

)
= 0.

Remark 15.1.1 (Note on Notation). We differ a bit in our terminology
with Federer – see Section 3.2.14 of Federer [13].

Remark 15.1.2 (Different Types of Rectifiability). We are often interested
in k-rectifiable sets E which have finite Hk measure – i.e. Hk(E) < ∞.
Federer calls such sets (Hk,k)-rectifiable sets.

I encourage you to explore examples of rectifiable sets in the following
exercises.

15.1.2.2 Exercises on Rectifiability

Exercise 15.1.7. Let E be a circle in R2. Show that it is (H1, 1)-rectifiable
by explicitly constructing Lipschitz functions from R1 into R2 that
cover E. Can you do this with one mapping?

Exercise 15.1.8. Let E be a union of some countably infinite collection
of lines and line segments in R2. Show that E 1-rectifiable. What do
you need for E to be (H1, 1)-rectifiable?

Exercise 15.1.9. Show that a countable union of k-rectifiable subsets
of Rn is again a k-rectifiable subset of Rn.
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Exercise 15.1.10. Show that E ≡ [0, 1]2 ∩Q2 is (H1, 1)-rectifiable but not
(H0, 0)-rectifiable.

Exercise 15.1.11. Define E ⊂ R3 to be the union of Di, where Di is
horizontal disk with radius 1i , centered at (i, 0, 0), and i ∈N∩ [2,∞).
Show that E is (H2, 2)-rectifiable but ∂E is only 1-rectifiable, not (H1, 1)-
rectifiable. Can you choose a sequence of radii for the disks so that ∂E
is now (H1, 1)-rectifiable?

Remark 15.1.3. Quite remarkably, one of the properties of k-rectifiable sets
E such that Hk(E) <∞, is that at Hk almost all points in E, the approximate
tangent cone is a plane. In other words, if you ignore a set with density 0 at
p, then there is a tangent plane at p.

In the next section, we look at a surprising theorem about measuring
k-rectifiable sets. We take a very close look at the case of 1-rectifiable
sets in R2.

15.2 Crofton’s Magic Formula: Measuring Sets with Projections

Crofton’s formula tells us that we can find the k-dimensional measure
of sets in Rn by integrating over k-dimensional projections. To say
what this means, we need to be more detailed. We will give the details
for 1-dimensional curves in R2 first, including a very careful proof
that does not use big machinery, but rather uses geometric insights
and some work(!) to reach the goal.

First a little terminology: l(θ) will be the line through the origin in
R2, whose angle with the positive horizontal axis is θ ∈ [0,π). We will
use r ∈ (−∞,∞) to refer to the coordinate along this line. The line
perpendicular to l(θ), through the point r ∈ l(θ), will be denoted by
pθ(r). Figure 89 illuminates the terminology.
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Now suppose we have a 1-dimensional set E. Note that H0(pθ(r)∩ E)
simply counts the number of intersections between E and pθ(r). Then
Crofton’s formula is given by:

Theorem 15.2.1 (Crofton’s Formula: 1-dim in R2).

H1(E) = C(1, 2)
∫π
0

∫∞
−∞

H0(pθ(r)∩ E)dr dθ

where the constant C(1, 2) does not depend on E.

E

l(θ)

pθ(r̂)

θ

r = r̂

Figure 89: Illustration of E, l(θ), and pθ(r). In this example, H0(pθ(r̂)∩
E) = 3.

Question: For what 1-dimensional sets does this hold? Answer:
rectifiable sets, which as we have seen can be pretty wild. The keys to
the proof are the facts that (1) proving this for polygonal curves is easy,
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(2) rectifiable sets are unions of pieces of C1 curves and are therefore
close to polygonal curves, and (3) Hausdorff measure behaves nicely
under projections. The details are important here! We go through this
proof in great detail in the next section.

What about sets in higher dimensions? The formula is completely
analogous. Again, we begin with some terminology. Let G(k,n)
denote the set of all k-dimensional linear subspaces of Rn. This is a
compact manifold and we can put a measure on it, invariant to all
rotations and reflections. It is called the Haar measure. HG(k,n) will
denote the normalized Haar measure on G(k,n)). We will denote the
orthogonal space to V by V⊥, and the orthogonal space through r ∈ V
by V⊥r ≡ V⊥ + r. Figure 90 illustrates the case of (k,n) = (1, 3).

Remark 15.2.1. In the case of G(1, 2) – the set of all lines through the
origin in R2 – the measure is 1

πH
1 C+, where C+ is the half unit circle

parameterized by the angles [0,π). Of course in this case each V is a line l(θ)
for some particular θ, V⊥ is the line through the origin orthogonal to l(θ),
and V⊥r = V⊥ + r = pθ(r). Note: in the 1-dimensional version of Crofton
appearing in Theorem 15.2.1 we use H1 C+, not the normalized version
1
πH

1 C+, and as a result the C(1, 2) we get is 12 instead of π2 .

Now we can state Crofton’s formula for k-dimensional sets in Rn.

Theorem 15.2.2 ( Crofton’s Formula: k-dim in Rn). Suppose that E is
a k-dimensional rectifiable set. Then

Hk(E) = C(k,n)
∫
V∈G(k,n)

∫
r∈V

H0(V⊥r ∩ E) dHk(r) dHG(k,n)(V)

where the constant C(k,n) does not depend on E.

Exercise 15.2.1. Draw a figure like Figure 90 illustrating the case
(k,n) = (2, 3).

Exercise 15.2.2. Compute the value of the RHS of Crofton’s formula
in Theorem 15.2.1 for the case of E = the unit circle in R2, ignoring the
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E

r = r̂

V⊥r̂

V

Figure 90: Illustration of E, V , and V⊥r̂ . In this example, H0(V⊥r̂ ∩ E) =
3.
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value of C(1, 2). Use the result you get to compute C(1, 2). Remember,
this constant does not depend on E.

Exercise 15.2.3. Compute the value of Crofton’s formula, using the
C(1, 2) found in exercise 15.2.2, for the case in which E is a line segment.

Exercise 15.2.4. Use the results in the previous exercise to prove that
Crofton works for polygonal curves. Why does this not actually prove
the theorem for C1 curves, even though it seems like it should? In
other words, what details are there that make that leap bigger than it
first appears? (This is precisely what we will be working through in
the next (long) section, but before you look at the answers there, give
it a try yourself.

Now we move to a careful proof of Crofton’s formula for curves in R2.

15.2.1 Crofton’s Formula in R2

Proof of Theorem 15.2.1: We prove this in steps. First two lemmas.

Lemma 15.2.1. If f : Rm → Rn is Lipschitz with Lipschitz constant L, then

Hk(E) 6 LkHk(f(E))

for all E ⊂ Rm.

Proof. See exercise 15.1.5

Lemma 15.2.2. Suppose that E is an open subset of R1. Then there is
a countable family of closed intervals Fi with mutually disjoint interiors,
satisfying

⋃
i Fi = E.

Proof. We prove it in small steps:
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( i ) We will use dyadic intervals Dk,n = [k−12n , k2n ] for k ∈ Z and n ∈ Z+.
Call this collection of closed intervals Dy. Note that Dy is countable.

( i i ) For every point e ∈ E, we may chose D ∈ Dy such that e ∈ D and
D ⊂ E. Call the set of D’s so obtained D. It is a countable set, so we
can enumerate the elements of D, Di. Note that

⋃
Di∈DDi = E.

( i i i ) Note that if D1,D2 ∈ D then either
a: D1 ∩D2 = ∅ or
b: D1 ∩D2 = a single endpoint or
c: D1 ∩D2 = either D1 or D2.

( iv ) Now we go through D and throw away all the Di’s which are
contained in other Dj’s. This takes a little bit of care but it can be done.
(See exercise 15.2.5.) We now have a collection of closed intervals
whose interiors are disjoint and whose union is E.

Remark 15.2.2. It is easy to show that Lemma 15.2.2 holds for E ∈ R2

homeomorphic to a circle, but we will not need this in our proof.

Step 1: For almost every θ,
∫∞
−∞H0(pθ(r)∩ E)dr 6 H1(E).

Proof.

1 We assume that E is an open subset of a C1 1-dimensional embedded
submanifold of R2 and that it is homeomorphic to an open subset of
R1. We will call this an R1-submanifold of R2.

2 Let Ep(θ) ≡ {e ∈ E such that TeE is parallel to pθ(r).}. Define Et(θ) ≡
E\Ep(θ) = {e ∈ E such that TeE is not parallel to pθ(r).}. Since H1(E) <

∞, there are at most a countable number of angles θi such that
H1(Ep(θi)) > 0. Since we are integrating over θ we can ignore those
θ’s. We will therefore assume H1(Ep(θ)) = 0. Notice that Ep(θ) is
closed.

366



15.2 crofton ’s magic formula

3 Now we partition Et into a countably (possibly infinite) family of
closed arcs Et,i, meeting other arcs only at end points, such that
H0(pθ(r)∩ Et,i) = either 0 or 1 for all r. We know we can make such
a partition by Lemma 15.2.2, the fact that Et is the homeomorphic
image of an open set in R1, and the fact that E is a subset of a C1

submanifold.
4 Then we can decompose H0(pθ(r)∩E) into a sum

∑
iH

0(pθ(r)∩Et,i)+
H0(pθ(r)∩ Ep).

5 Denote the orthogonal projection of a set F ∈ R2 onto l(θ) by Pθ(F).
Integrating H0(pθ(r)∩ E) over r ∈ l(θ), we get

∫
H0(pθ(r)∩ E) dr =

∫∑
i

H0(pθ(r)∩ Et,i)dr+
∫
H0(pθ(r)∩ Ep)dr

=
∑
i

∫
H0(pθ(r)∩ Et,i)dr+

∫
H0(pθ(r)∩ Ep)dr

(by the monotone convergence theorem)

=
∑
i

H1(Pθ(Et,i)) +

∫
H0(pθ(r)∩ Ep)dr

6
∑
i

H1(Et,i) +

∫
H0(pθ(r)∩ Ep)dr

( implied by Pθ being Lipschitz and Lemma 15.2.1)

=
∑
i

H1(Et,i) +

∫
Pθ(Ep)

H0(pθ(r)∩ Ep)dr

6
∑
i

H1(Et,i) + 0

(because H1(Pθ(Ep)) = 0 implies
∫
Pθ(Ep)

H0(pθ(r)∩ Ep)dr = 0)

6 H1(E).
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Remark 15.2.3. A note about thinking about proofs versus writing
proofs down: when I came up with the proof above, the visualization of it
was very simple, yet looking at this string of equations above, I struggle to
find that simplicity. And that is because (1) visually/geometrically the ideas
are easy to represent and manipulate and (2) visually/geometrically, we can
organize pieces of our thoughts into patterns that are far from sequential, yet
in writing them down this is very difficult. Nevertheless, I will try to give a
sense for how I was actually thinking about it here:

• If I could grab pieces of E that were small enough to project to 0 or 1 and
miss only a measure zero piece, then I would use the Lipschitz mapping result
which says that pieces project to pieces whose measure is not larger.

• Now sum everything up and you get that the integral of the projection
function has to be dominated by the length of the thing you started with.

• To get that the problem points – those whose tangent is parallel to the
projection direction – have measure zero, we exploit the fact that this can fail
(I.e. H1(Ep) > 0) only at a countable number of θ’s.

• And of course, that means we can ignore those θ’s because we will be inte-
grating over the θ’s in the end.

That is really all that the above array of equations contains!

Exercise 15.2.5. Show that the collection of intervals D generated in
the proof of Lemma 15.2.2 can be culled as called for in the last step
of the proof.

Exercise 15.2.6. Show that Lemma 15.2.2 holds for E homeomorphic
to the circle.

Step 2: We can partition any R1-submanifold into closed arcs Ēεi
with disjoint interiors and the property that all the tangent direc-
tions in any one interval Ēεj lie in an arc of the unit circle of width
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ε. That is, identifying tangent directions with θ ∈ S1, we can choose
the Ēεi such that |Te1E− Te2E| 6 ε for any e1, e2 ∈ Ēεi , for all i.

Proof. Use the fact that E is C1 and homeomorphic to an open subset
of R1, and then use the idea in the proof of Lemma 15.2.2

Prep for Step 3: Now define the associated polygonal curve Pε to the
partition in Crofton step 2 to be the polygonal curve formed on the
endpoints of the closed arcs Ēεi , with connectivity determined by the
connectivity of E. Define the piece of Pε sharing endpoints with Ēεi to
be Pεi . (Note that this polygonal curve can have an infinite number of
sides.)

Step 3:

∫π
0

∫∞
−∞

H0(pθ(r)∩ Ēεi )dr dθ−
∫π
0

∫∞
−∞

H0(pθ(r)∩ Pεi )dr dθ 6 2εH1(Ēεi ).

Proof.

1 Note first that when the angle between Pθ and Pεi is greater than ε,
H0(pθ(r)∩ Pεi ) = H0(pθ(r)∩ Ēεi ) for all r. This is because both Pεi and
Ēεi are Lipschitz graphs over l(θ) and they share endpoints.

2 When the angle between Pθ and Pεi is less than ε we have
a
∫
H0(pθ(r)∩ Pεi ) dr > 0

b
∫
H0(pθ(r)∩ Ēεi ) dr 6 H1(Ēεi ) (from Step 1)

c we get that
∫π
0

∫∞
−∞

∣∣H0(pθ(r)∩ Ēεi ) −H0(pθ(r)∩ Pεi )
∣∣dr dθ 6 2εH1(Ēεi ).

3 Putting 1 and 2 together, we get the desired result.
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Step 4: For an R1-submanifold, with partition {Ēεi }i and associated
polygonal curve Pε we can therefore get that∫π
0

∫∞
−∞

H0(pθ(r)∩ E)dr dθ−
∫π
0

∫∞
−∞

H0(pθ(r)∩ Pε)dr dθ 6 2εH1(E)

.

Proof. This is immediate from Step 3.

Step 5: Crofton holds for (possibly infinite, possibly disconnected)
polygonal curves.

Proof. Observe that for any line segment L,∫π
0

∫∞
−∞

H0(pθ(r)∩ L)dr dθ =

∫α+π
α

| sin(θ)|H1(L)dθ (for some α)

= H1(L)

∫π
0

sin(θ)dθ

= 2H1(L)

so that C(1, 2) for line segments is just 12 and we can conclude that

H1(L) =
1

2

∫π
0

∫∞
−∞

H0(pθ(r)∩ L)dr dθ.

Since a polygonal curve is just a bunch of line segments, we get that

H1(P) =
1

2

∫π
0

∫∞
−∞

H0(pθ(r)∩ P)dr dθ

for any polygonal curve P.

Remark 15.2.4. This step is just Exercises 15.2.2-15.2.4

Step 6: Crofton’s formula holds for R1-submanifolds.
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Proof. As ε→ 0, H1(Pε)→ H1(E). This, combined with Steps 4 and 5,
gives us our result.

Exercise 15.2.7. Convince yourself that indeed, as Step 6 claims, ε→ 0,
H1(Pε)→ H1(E).

Step 7: Crofton’s Formula holds for any piece of an embedded C1-
submanifolds

1 Let E ⊂M where M is a 1-dimensional embedded C1 submanifold of
R2.

2 Since H1 M is Radon, any piece E of M can be approximated arbi-
trarily well with O, an open subset M. I.e. H1(O \ E) 6 ε.

3 Now we partition each O into a countable collection of homeomorphic
images of closed intervals of R whose images in M intersect only at
the endpoints. The images of interiors, which we denote Oi, are a
disjoint countable collection of R1-submanifolds and O = (∪iOi) ∪N,
where N has H1 measure 0 (actually, N is at most countably infinite).

4 The sets Fi ≡ Oi \ E are contained in the Ui which are open subsets
of Oi (and are therefore R1-submanifolds) with the property that∑
iH

1(Ui) 6 2ε.
5 We use Step 1 to get

∑
i

∫∞
−∞

H0(pθ(r)∩ Fi)dr 6
∑
i

∫∞
−∞

H0(pθ(r)∩Ui)dr

6
∑
i

H1(Ui)

6 2εi.

6 Define K = N∩ E. We note that

E =

(⋃
i

Oi ∩ E

)
∪K
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and

O =

(⋃
i

Oi

)
∪N

=

(⋃
i

Fi

)
∪

(⋃
i

Oi ∩ E

)
∪N

and because E ⊂ O we have that∫∞
−∞

H0(pθ(r)∩ E)dr 6
∫∞
−∞

H0(pθ(r)∩O)dr.

7 Putting all this together we have, except for a measure zero set of θ,∫∞
−∞

H0(pθ(r)∩ E)dr

6
∫∞
−∞

H0(pθ(r)∩O)dr

=
∑
i

∫∞
−∞

H0(pθ(r)∩ Fi)dr

+
∑
i

∫∞
−∞

H0(pθ(r)∩Oi ∩ E)dr

+

∫∞
−∞

H0(pθ(r)∩N)dr

=
∑
i

∫∞
−∞

H0(pθ(r)∩ Fi)dr

+

∫∞
−∞

H0(pθ(r)∩ E)dr

+0 (See Remark 15.2.5)

=
∑
i

∫∞
−∞

H0(pθ(r)∩Ui)dr

+

∫∞
−∞

H0(pθ(r)∩ E)dr

6 2ε+

∫∞
−∞

H0(pθ(r)∩ E)dr.
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Remark 15.2.5. because∫∞
−∞

H0(pθ(r)∩N)dr =

∫
Pθ(N)

H0(pθ(r)∩N)dr

and H1(N) = 0 → H1(Pθ(N)) = 0, the integral is 0. (Reminder: Pθ is
orthogonal projection onto l(θ) and pθ(r) is the line orthogonal to l(θ) at r.)

8 Note that because O is the disjoint union of a countable collection of
R1 submanifolds Oi and a null set N, we get

1

2

∫π
0

∫∞
−∞

H0(pθ(r)∩O)dr dθ

=
1

2

∑
i

∫π
0

∫∞
−∞

H0(pθ(r)∩Oi)dr dθ

+
1

2

∫π
0

∫∞
−∞

H0(pθ(r)∩N)dr dθ

=
∑
i

H1(Oi) + 0

= H1(O).

9 Using the previous part and integrating the results of part 7 over the
semicircle,

1

2

∫π
0

∫∞
−∞

H0(pθ(r)∩ E)dr dθ 6
1

2

∫π
0

∫∞
−∞

H0(pθ(r)∩O)dr dθ

= H1(O)

6
1

2

∫π
0

∫∞
−∞

H0(pθ(r)∩ E)dr dθ+ 2επ

we get ∣∣∣∣12
∫π
0

∫∞
−∞

H0(pθ(r)∩ E)dr dθ−H1(O)

∣∣∣∣ 6 2επ.

Recalling
∣∣H1(O) −H1(E)

∣∣ 6 ε, we get that∣∣∣∣12
∫π
0

∫∞
−∞

H0(pθ(r)∩ E)dr dθ−H1(E)

∣∣∣∣ 6 2επ+ ε
and because ε was arbitrary, leads us to

H1(E) =
1

2

∫π
0

∫∞
−∞

H0(pθ(r)∩ E)dr dθ.
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Step 8: Crofton’s Formula holds for any 1-dimensional rectifiable
set.

Proof. Using Theorem 15.1.3 and Exercise 15.1.6, we can write E as
the union of a countable number of disjoint pieces Ei of embedded C1

submanifolds Mi with H1(Mi) <∞ and a set of H1 measure 0, N

E =

(⋃
i

Ei

)
∪N

so that H1(E) =
∑
iH

1(Ei) which, combined with Step 7, proves
Crofton’s formula for (H1, 1)-dimensional rectifiable sets in R2.

End of Proof of Theorem 15.2.1

Remark 15.2.6. Note that our proof of Theorem 15.2.1 works as long as E
has locally finite H1 measure, i.e. H1(K∩ E) <∞ ∀ compact K ⊂ R2.

Remark 15.2.7. Note that without much comment, we have used the fact
that a countable union of H1 measure 0 sets also has H1 measure zero, a
projection of a measure 0 set has measure 0 and, if you mess with a function
on a set of measure 0, this does not change the integral of the function (when
integrating with respect to H1).

Extending the proof to higher dimensions uses the ideas introduced in
the case of 1-dimensional sets in R2, but there are further details that
make it a bit more messy. The only real added complication is that we
do not have a simple way to cover the set E we are projecting using a
partition like we did in the case of 1-dimensional sets in R2.
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The basic idea is again that a rectifiable set is a union of pieces of
C1 submanifolds and that C1 implies that the pieces are close to flat
at small scales. It takes more work though because we no longer
have that flat patches approximating the manifold meet up with the
manifold, so we do not have that the projections match for any of
the projections in the Grassmannian. But they almost do, and with
extra work we can add just another small term that goes to zero and
everything works out. The most efficient way to prove this theorem
is to invoke the co-area formula that was introduced in Section 12.6.2.
See Morgan’s book [32] for this proof.

The point of our proof for the 1-dimensional case, was to show what
can be done with barehanded methods. This is something I am fond of
and I believe it helps you if you are aiming for an intimate, instinctive
grasp of something mathematical. What can be shown using the
simplest insights, using only the simplest tools (and perhaps a fair bit
of work)? Approaching a theorem from multiple directions deepens
the understanding and broadens your ability to use and extend it.

15.3 Calculus, Deeply Generalized

So what is Geometric Measure Theory anyway?

Actually, studying the first 15 chapters of this book has already ex-
posed you to pieces of geometric measure theory and geometric anal-
ysis. In fact, Chapter 14 was titled An Invitation to Geometric Measure
Theory: Part 1 when I wrote it for my blog (see [43]). And the first two
sections of this chapter are also pieces of geometric measure theory.

Here is a succinct description I like:
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Geometric Measure Theory: calculus, generalized to wild
sets, measures and functions – here we find the most
general and useful versions of theorems that we often
have seen in some simple form in calculus and elementary
analysis.

and

Geometric analysis of, and on, sets, functions and mea-
sures in Rn

is the shortest phrase that encompasses a large portion of what is
referred to as geometric measure theory and geometric analysis.

Instead of trying to give a synopsis of the entire field, I will instead
leverage what we have already learned and go a bit more deeply in
the rectifiability corner of geometric measure theory. After this, I will
make a few comments on references and how to take your study of
geometric measure theory to the next level.

15.3.1 What Rectifiability Opens

We will follow two threads of the many we could follow into a deeper
understanding of rectifiability. The first tells us how local, asymptotic
properties of measures (densities) tell us precise things about the
structure of locally finite measures. The second looks briefly at sets
of finite perimeter in Rn. These are essentially those sets that, if we
only have integration of smooth test functions with respect to Ln to
measure things with, look like they have boundaries with finite Hn−1

measure.
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15.3.1.1 Marstrand, Preiss, and the Importance of Being Rectifiable

In the same way that f : Rn → Rm, satisfying the simple Lipschitz
bound on expansion

|f(x) − f(y)| 6 K|x− y|,

lets in wildness but not so much that you don’t still have linear ap-
proximations almost everywhere, we have that a subset of a countable
collection of Lipschitz images

E ⊂
⋃
i

fi(R
k),

where fi : Rk → Rn are Lipschitz, k < n and Hk(E) < ∞, will have
k-dimensional approximate tangent planes Hk almost everywhere.

To go further in this direction, as we will do in this section, we need a
few more definitions.

Exercise 15.3.1. Suppose that

Q∩ [0, 1] = {qi}
∞
i=1

and that
E = ∪i{[0, 1]× {qi}} ⊂ [0, 1]2.

Show that at no point of E is there a approximate tangent line.

Definition 15.3.1 (Locally Finite Borel Measure). A Borel measure µ
on Rn is locally finite if, for every compact set K ⊂ Rn, µ(K) <∞. In Rn,
this is equivalent to requiring µ(B(0, r)) <∞ for all r <∞.

Definition 15.3.2 (k-rectifiable Measure). A locally finite Borel measure
is k-rectifiable if there is a k-rectifiable set E such that µ(Rn \ E) = 0.
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Definition 15.3.3 (Support of a Measure). The support of a measure µ
on Rn is the complement of the points x ∈ Rn such that µ(B(x, r)) = 0 for
some r > 0. Alternatively, it is the complement of E, the largest open set in
Rn such that µ(E) = 0.

Remark 15.3.1. We note that a k-rectifiable measure need not have a k-
rectifiable support.

Exercise 15.3.2. Find a 1-rectifiable measure in [0, 1]2 whose support E
is not 1-rectifiable.

Definition 15.3.4 (Restriction of a Measure to a Set). We define µ E

to be the measure generated by the measure µ and the set E, defined by

µ E(F) ≡ µ(E∩ F).

Exercise 15.3.3. Suppose that

Q∩ [0, 1] = {qi}
∞
i=1,

Ei ≡ [0, 1]× {qi} ⊂ [0, 1]2,

E ≡ ∪iEi,

and

µ ≡
⋃
i

{
1

2i
H1 Ei

}
.

Show that at almost every point of E, there is a (horizontal) approxi-
mate tangent line.

To prepare us to understand the statements of Marstrand’s result and
Preiss’ result, we look at the notion of densities (which we already
encountered in Chapter 14) a bit more deeply.
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Definition 15.3.5 (α-dimensional Densities of Sets). We define the up-
per and lower α-dimensional (Hausdorff) densities of a set E at a point p,
by

θ∗α(E,p) ≡ lim sup
r→0

Hα(B(p, r)∩ E)
ω(α)rα

θα∗ (E,p) ≡ lim inf
r→0

Hα(B(p, r)∩ E)
ω(α)rα

and when θ∗α(E,p) = θα∗ (E,p), we simply refer to this limit as the α-
dimensional density of E at p

θα(E,p) ≡ lim
r→0

Hα(B(p, r)∩ E)
ω(α)rα

.

See Remark 15.3.2 for a reminder of the definition of ω(α).

Theorem 15.3.1 (Bounds on Upper Densities). Suppose E ⊂ Rn and
Hα(E) <∞, then

1

2α
6 θ∗α(E,p) ≡ lim sup

r→0

Hα(B(p, r)∩ E)
ω(α)rα

6 1

Remark 15.3.2 (Reminder: ω(α)). Recall that for any α > 0, ω(α) ≡
is the α-volume of the “α-dimensional unit ball” and, in the case in which
α = k, an integer, ω(k) = the usual k-volume of the k-dimensional unit ball
in Rk. We note that ω(0) = 1. See Definition 12.3.6 on page 285.

Analogously, we have:

Definition 15.3.6 (α-dimensional Densities of Measures). We define
the upper and lower α-dimensional densities of a measure µ at a point p, by

θ∗α(µ,p) ≡ lim sup
r→0

µ(B(p, r))
ω(α)rα

θα∗ (µ,p) ≡ lim inf
r→0

µ(B(p, r))
ω(α)rα
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and when when θ∗α(µ,p) = θα∗ (µ,p), we simply refer to this limit as the
α-dimensional density of µ at p

θα(µ,p) ≡ lim
r→0

µ(B(p, r))
ω(α)rα

.

See the Figures (91-93). The first figure illustrates the geometry of a
2-dimensional density ratio, the second illustrates the limiting pro-
cess leading to a 1-dimensional density, and the third illustrates a
1-dimensional set E, whose upper and lower densities are not the same
at a point p ∈ E.

Remark 15.3.3 (Details on Figure (93)). We add a in length by wiggling
the curve inside B(p, r1) but outside B(p, r2), then we repeat this, scaled for
each pair of balls – we add a

10n in length to the curve by wiggling it inside
B(p, r2n−1) but outside B(p, r2n). Reiterating from the figure the facts that
r2n−1 = 10

−(n−1) and r2n = (0.9)10−(n−1), we are led to the densities

H1(E∩B(p, r1)
2r1

=
2+ a+ a

10 +
a
100 +

a
1000 + ...

2

=
2+ a109
2

H1(E∩B(p, r2)
2r2

=
2(0.9) + a

10 +
a
100 +

a
1000 + ...

2(0.9)

=
2(0.9) + a19
2(0.9)

where we have used the fact that 1.1111.. = 10
9 . Note now, because of the

scale invariant way we have added the wiggles and chosen the ri’s, we can
immediately write down the following ratios:

H1(E∩B(p, r2n−1)
2r2n−1

=
2+ 10

9 a

2

= 1+
5

9
a
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H1(E∩B(p, r2n)
2r2n

=
2(0.9) + 1

9a

2(0.9)

= 1+
5

81
a.

This allows us to conclude that

θ1∗(E,p) 6 1+
5

81
a < 1+

5

9
a 6 θ∗1(E,p)

implying that the density θ1(E,p) does not exist.

Exercise 15.3.4. Verify that indeed, the ratios discussed in Remark 15.3.3
do not change.

Figure 91: Illustration of the density of a 2-dimensional set.

We are ready to state the amazing results of Marstrand and Preiss.

Theorem 15.3.2 (Marstrand’s Theorem). Suppose that µ measures Rn. If
α > 0, E is a Borel set with µ(E) > 0, and

0 < θα(µ,p) <∞
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Figure 92: Illustration of the density of a 1-dimensional set.

for µ almost all p ∈ E, then α is an integer.

Remark 15.3.4. Notice that the statement of the theorem implicitly tells you
that on that set of full µmeasure where the bounds hold, θ∗α(µ,p) = θα∗ (µ,p).

Theorem 15.3.3 (Preiss’ Theorem). Assume that µ is a locally finite mea-
sure on Rn, α > 0, and

0 < θα(µ,p) <∞

for µ-almost all p. Then either

1 µ = 0 or
2 α = k 6 n where k is a natural number and the conditions above are

equivalent to the existence of a Borel measurable function f and a collection
{Γi}

N
i=1 (with N 6∞) of Lipschitz images of pieces of Rk in Rn such that

µ(E) =
∑
i

∫
Γi∩E

f(p)dHk(p).
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Figure 93: At each scale, we add extra length by adding a wiggle in
the curve inside the 2n− 1-th ball but outside the 2n-th ball. See the
Remark (15.3.3) for the calculations.
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Preiss’ theorem includes Marstrand’s theorem and simply put, these
two results imply that, for locally finite measures,

For locally finite measures, the measures with well
behaved densities are precisely those measures that
are rectifiable (i.e. well behaved!).

For more on Marstrand’s theorem [27] and Preiss theorem [34], I rec-
ommend De Lellis’ beautifully short exposition [11]. Federer thought
that Preiss’ paper was one of the most important mathematical results
of the 20th century [18].

15.3.1.2 Sets of Finite Perimeter

When modeling many physical phenomena, boundaries are very often
important to identify, to measure, to track. Whether you are solving
partial differential equations on a subset E of Rn, or thinking about
the physics where you have two different phases that are interacting,
modeling heat or substances diffusing from an object into the sur-
rounding medium, or tracking chemicals diffusing across boundaries,
the sizes of the boundaries are often of utmost importance. In the
precise mathematical models we often want to allow complicated, even
wild solutions, so we choose a space of candidate solutions that in-
cludes very wild behavior. It often becomes necessary to use a variety
of definitions of boundary.

To explore this, we use densities, introduced in the last section, as well
as the behavior of the density ratios as the radius goes to zero.

Suppose that E ⊂ Rn. One might think of Hk(B(p,r)∩E)
ω(k)rk

, for some k 6 n
as a measure of p’s inclusion in E and Ec. This allows us to define
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several versions of the boundary of a set. We will only be exploring
the cases of k = n and k = 0.

r-Thick Measure Theoretic Boundaries , ∂∗rE For any posi-
tive r and E ⊂ Rn, we define
Definition 15.3.7 (r-Thick Measure Theoretic Boundary). The r-thick
measure-theoretic boundary, ∂∗rE is defined by

∂∗rE ≡ {p |
Hn(B(p, r)∩ E)

ω(n)rn
> 0 and

Hn(B(p, r)∩ Ec)
ω(n)rn

> 0}.

While I am not aware of an official definition, but this is very natural
and I would not be surprised if it has been used before. It probably was
in the collection of things that David Caraballo and I discussed about
20 years ago, but we never pursued it further and I have forgotten.
r-Thick Topological Boundaries , ∂rE For any positive r and
E ⊂ Rn, we analogously define
Definition 15.3.8 (r-Thick Topological Boundary). The r-thick topolog-
ical boundary ∂rE is defined by

∂rE ≡ {p |
H0(B(p, r)∩ E)

ω(0)r0
> 0 and

H0(B(p, r)∩ Ec)
ω(0)r0

> 0}.

This is a sensible definition of a topological boundary at resolution r,
or r-thick topological boundary. Again, while I am not aware of an
official definition of this version, it is almost certainly already defined
somewhere since, if we define the r-neighborhood of a E to be Nr(E),

Nr ≡ {x | d(x,E) < r},

then we have that
∂rE = Nr(E) \Nr(E

c).

Topological boundary, ∂E This is the boundary you encounter
in metric spaces – points whose neighborhoods always contain points
in E and points not in E.
Definition 15.3.9 (Topological Boundary from Densities). Instead of
the usual topological definition, an equivalent definition of the topological
boundary ∂E using 0-dimensional densities is

∂E ≡ {p | ∀r > 0, H0(B(p, r)∩ E)
ω(0)r0

> 0 and
H0(B(p, r)∩ Ec)

ω(0)r0
> 0}.
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Note that a set of measure zero in Rn (for example all the points with
rational coordinates) can be dense in Rn. The topological boundary of
such a set is all of Rn!

Measure Theoretic Boundary, ∂∗E The measure theoretic bound-
ary of E ⊂ Rn, ∂∗E, are all the points p ∈ Rn that “measure theoreti-
cally see” both E and its complement, Ec. This is expressed with upper
densities as follows,
Definition 15.3.10 (Measure Theoretic Boundary). The point p is in
the measure theoretic boundary of E – more succinctly, p ∈ ∂∗E – if and only
if

θ∗n(E,p) = lim sup
r→0

Hn(E∩B(p, r))
ω(n)rn

> 0

and

θ∗n(Ec,p) = lim sup
r→0

Hn(Ec ∩B(p, r))
ω(n)rn

> 0.

Reduced Boundary, ∂∗E The reduced boundary is the most restric-
tive of all the boundaries we will be covering. The essence is that,
measure theoretically speaking, a point of the measure theoretic bound-
ary is a point where when you zoom in enough, the set looks like a
half plane.
Definition 15.3.11 (The Reduced Boundary). We will say that p ∈ Rn

is in ∂∗E, the Reduced Boundary of E, if there exists a unit vector νp such
that H+ ≡ {x ∈ Rn | 〈x− p,νp〉 > 0} (and H− ≡ (H+)c) satisfies

θn(E∩H+,p) = lim
r→0

Hn(E∩H+)

ω(n)rn
= 0

and
θn(Ec ∩H−,p) = lim

r→0

Hn(Ec ∩H−)

ω(n)rn
= 0.

Remark 15.3.5. νp is the measure theoretic outward unit normal to E at p.
Remark 15.3.6. The way the reduced boundary usually appears is in the
context of sets of finite perimeter. That approach, which is explained in
great detail in chapter 5 of Evans and Gariepy [12], arises from the study
of functions of bounded variation. We first figure out how to compute the
integral of the norm of the gradient of χE(x), the characteristic function
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of a set E ⊂ Rn. Recall that χE(x) is the function that equals one on E
and 0 everywhere else. When

∫
Rn |∇χE| (which takes work to make sense

of) is bounded, we say that E is a set of finite perimeter and ∇χE can be
represented by a pair – radon measure µE and a unit vector field ν. ν points
into E (which makes sense – the gradient point “uphill”) and the measure
tells about the jump up – µE(F) turns out to be Hn−1(∂∗E∩ F). In this case
we say that E is a set of finite perimeter.

Figure 94 illustrates r-thick boundaries. In this case the set is smooth,
so the r-thick measure theoretic and r-thick topological boundaries are
the same.

Figure 95 illustrates the fact that for points on a smooth boundary, the
density of the set is always 12 and that these points are in every version
of the boundary we define in this section.

Figures 96 and 97 illustrate the difference between the topological,
measure theoretic and reduced boundaries.

Figure 98 illustrates the ideas in my definition of the reduced boundary.

Figure 99 illustrates a point p that is not in the reduced or measure
theoretic boundaries, and yet for all r > 0, both H2(E∩B(p,r))

πr2
> 0 and

H2(Ec∩B(p,r))
πr2

> 0.

It turns out that for sets of finite perimeter E ⊂ Rn, the reduced
boundary ∂∗E (and thus the measure theoretic boundary ∂∗E) are
(Hn−1,n− 1)-rectifiable sets. The reason the ∂∗E must be a rectifiable
set when ∂∗E is, is that ∂∗E ⊂ ∂∗E and Hn−1(∂∗E \ ∂

∗E) = 0. See Evans
and Gariepy [12] Chapter 5 for details.
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Figure 94: Here is an illustration of the r-thick boundary ∂rE of a nice
(smooth set).
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Figure 95: The density of the set at a point p where the function is
smooth is always 12 . In this case, p will be in all 5 versions of boundary
we define in this section.

Figure 96: Example of a set and the points that are in the Topological
boundary, the measure theoretic boundary and the reduced boundary.
This is also an illustration of the fact that ∂∗E ⊂ ∂∗E ⊂ ∂E.
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Figure 97: Another example of a set and the points that are in the Topo-
logical boundary, the measure theoretic boundary and the reduced
boundary.

Figure 98: Illustration of how densities are used in the definition of
the reduced boundary.
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Figure 99: Illustration of the fact that cusp points are in the topological
boundary, but not the reduced or the measure theoretic boundary.

Key takeaways for this section are that (1) there are
lots of different versions of boundaries of a set, (2)
densities are very useful in defining and understand-
ing nuanced versions of boundary, (3) boundaries
that are useful (though to be fair, I have not made an
argument for useful here), are either (Hn−1,n− 1)-
rectifiable sets or are thick boundaries of some sort.

15.3.2 Next Steps and References

When I met David Caraballo in 1999 and was swept away by the
beauty and natural power of geometric measure theory, the first book
I studied (at David’s suggestion) was Evans and Gariepy’s Measure
Theory and Fine Properties of Functions [12].
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Soon after, I met Bill Allard and began learning bits and pieces from
him, and reading bits and pieces of Federer’s tome [13]*, and (eventu-
ally) a whole host of other books I used to learn from, teach from, and
reference now and then [17, 32, 37, 22, 11, 29, 26, 3, 24].†

Through the connection with Bill and David, Jean Taylor, Frank Mor-
gan, Bob Hardt and Craig Evans began visiting, first at Los Alamos
and then at WSU in Pullman. There were others as well (Harold Parks,
John Garnett, and Triet Le, for example). The point of mentioning
the visitors and friends is that these in person contacts, these social
connections, were a very important part of the education that I and
my students gained. It was an important part of how we moved into
the culture and modes of thinking of geometric measure theory and
geometric analysis. While it is not the only way to do that, I would
encourage personal interactions if it all possible.

What is my recommendation for an efficient path into geometric
measure theory?

Find collaborators (and experts) Find one or two others to talk
with (at a blackboard!) while you are working towards mastery. Hav-
ing an expert to ask questions of in person would be best, but having
other dedicated scholars as peers is also very important.

Take time to think and time to connect Remember that you need
lots of time alone and lots of time working with others.

Seek places r ich in creativity Take every chance you can to go
to places where there is a generous atmosphere, rich in mathematical
thoughts and explorations. For example, MSRI in Berkeley, IPAM at

*When Bill was a graduate student at Brown (where Federer was), Federer was
writing his famous book on geometric measure theory. Bill read through every detail
of Federer’s manuscript and made extensive suggestions to Federer. Anyone who
knows Federer’s book will be very impressed with this.

†For a more complete overview of the references you can read the article I wrote
in 2012 [44]. Since then, the only other book I have added to the list of books used is
Maggi’s book [26].
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UCLA, IMA at Minnesota, ICERM at Brown, etc. but also universities
with friendly groups focused on these ideas.

Evans and Gariepy, 1 -3 Master the first three chapters of Evans
and Gariepy.

Morgan, 1 -5 and then 6 -12 Work through the first 5 chapters of
Morgan’s book carefully. Then understand all the ideas in chapters
6-12. Start dabbling in Federer’s book.

Evans and Gariepy, 4 -5 Master chapters 4 and 5 of Evans and
Gariepy along with starting Mattila’s book.

Mattila Finish Mattila.
Other References I also recommend Krantz and Parks [22] and
Leon Simon’s book [36] also. I have taught from both and like both of
them.

Interest Guided Studies What you do next depends on your tastes
and needs.

Exposition Always be on the lookout for expository/historical ar-
ticles. For example, Almgren’s famous Questions and Answers about
area–minimizing surfaces and geometric measure theory [1] and Fleming’s
Geometric Measure Theory at Brown in the 1960s [15] and De Giorgi and
Geometric Measure Theory [16]. (I recommend all three of these highly!)

As you launch into your next mathematical explorations, remember
what was written in the Preface and Preamble to this book ... don’t
let becoming an expert in an area or two prevent or delay you from
becoming a jack of all trades. Stay playful. Stay connected and
grounded.

Blessings ... may you truly thrive!

Kevin
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2X, the power set of x, 282

|x|, vector space norm, 214

B(y, r), open ball centered at y,
with radius r, 104

B̄(y, r), closed ball centered at
y, with radius r, 104

∂E, topological boundary of E,
115

∂∗E, reduced boundary, 386

∂∗E, measure theoretic
boundary, 386

∂rE, r-thick topological
boundary, 385

∂∗rE, r-thick measure theoretic
boundary, 385

C([a,b]), space of continuous
functions on the
interval [a,b], 121

ε-net, cover of a set with
ε-balls, 109

Hη, η-dimensional Hausdorff
measure, 286

JF, Jf, Jacobian of a mapping,
312

Lp, function space with

|f| ≡
(∫

|f|pdµ
) 1
p , 129

L2([a,b]), space of functions
with finite 2-norm on
[a,b], 122

Lip([a,b],K,B), a space of
Lipschitz functions on
[a,b], 121

Ld, d-dimensional Lebesgue
measure, 284

µ A, the restriction of the
measure µ to the set A,
300

µg, the g weighted version of
the measure µ, 309

µ, any outer measure, 282

µ-almost everywhere, 357

O(h), big O of h, 159

ω(η), η-volume of the
“η-dimensional” unit
ball, 285

o(h), little o of h, 159

p-norm, |f| = |f|p ≡
(∫

|f|pdµ
) 1
p ,

157

k-rectifiable, k-dimensional
rectifiable sets, 359
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(Hk,k)-rectifiable,
k-dimensional
rectifiable sets with
finite Hk measure, 360

σ-algebra, a collection of sets
closed under
countable unions and
complements, 283

θ∗α(E,p), upper α-dimensional
density of the set E at
p, 379

θ∗α(µ,p), upper α-dimensional
density of the measure
µ at p, 379

θα(E,p), α-dimensional density
of the set E at p, 379

θα(µ,p), α-dimensional density
of the measure µ at p,
380

θα∗ (E,p), lower α-dimensional
density of the set E at
p, 379

θα∗ (µ,p), lower α-dimensional
density of the measure
µ at p, 380
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adjoint operator, 182

affine subspace, 171

Allard, Bill
statement about Fred

Almgren, 35

story of Bill and Federer’s
book, 392

almost everywhere, 357

analysis on graphs, 87

approximate tangent cone, 351

approximate continuity, 357

approximate tangent line, 351

approximation
by polynomials, 213

definition by
approximation, 202

finite dimensional, 201

in Lp spaces, 210

local, 201

Weierstrass Theorem, 213

area formula, 241, 242, 312, 340,
341

arithmetic mean, 141

B(y, r), 104

B̄(y, r), 104

Banach fixed point theorem,
322, 321–328

Banach space, 322

Beckenbach and Bellman,
Inequalities, 168

Bell Labs, 44, 48

big O of h, O(h), 159

boundary, 384–391

r-thick measure theoretic,
385

r-thick topological, 385

measure theoretic, 386

reduced, 386

topological, 115, 385

Burago and Zalgaller, Geometric
Inequalities, 168

Caratheodory criterion, 292

Cauchy sequence, 106, 322

closed ball, 104

closed set, 104

closure of a set, 115

coarea formula, 241, 242, 312,
340, 341

coercive function, 337

compact sets, 107–111

properties of compact sets,
111

complete metric space, 106

complete space, 322

complex dynamics, 98

concave function, 141
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concentration of measure on
Sn−1, 95, 151

conformal mappings, 98

conjugate exponents, 155

connectedness, 111

continuity, 105

contraction mapping, 322

convergence, 105

in measure, 218, 303

in norm, 218, 303

pointwise, 218

uniform, 303

weak, 219, 303

convex function, 140, 333–339
convex set, 140, 333

Coyle, The Culture Code, 44,
45–49

Coyle, Daniel, 47

Crofton’s Formula, 361–375

degree of a vertex, 120

degree theory, 241, 249, 339

densities of sets and measures
θ∗α(E,p), 379

θ∗α(µ,p), 379

θα(E,p), 379

θα(µ,p), 380

θα∗ (E,p), 379

θα∗ (µ,p), 380

densities of measures, 379
densities of sets, 350, 379

derivative, 264

as a linear approximation,
159, 221, 264, 344

cone picture, 234, 346

Jacobian, 226–233

using them to understand
intersections, 237–240

variational, 222–225

determinants, 182–186

diffeomorphism, 262

directionally coercive, 337

dominated convergence
theorem, 307

eigenvalues, 186–188

eigenvectors, 186–188

embedding, 129

ε-net, 109

epigraph, 140, 334

Epstein, Range, 44

ergodic theory, 90

Euclidean norm, 120

Evans and Gariepy, Measure
Theory and Fine
Properties of Functions,
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exponential of operators, 255

exterior, 115

Fatou’s lemma, 307

full rank
mapping, 266

matrix, 265

theorem, 266

geometric mean, 141

Geometric Measure Theory,
375

Givechi, Roshi, 47

Gram-Schmidt condition, 180

Hardy, Littlewood and Polya,
Inequalities, 168
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harmonic measure, 94

Hausdorff measure, 286

Hilbert space, 203

IDEO, 47

implicit function theorem, 257,
261, 266–275, 275

independent basis, 171

inequality
AM-GM, 140

basic facts, 131

Cauchy-Schwarz, 135

Chebyshev, 154

concentration of measure,
151

Gronwall, 164

Hölder’s, 155

isodiametric, 144

isoperimetric, 144

Jensen’s, 140

Markov, 154

methods of proving, 132

triangle, 133

Young’s, 157

inf, 108

infimum, 108

inner product, 176

inner product space, 176

integration
definition, 299

dominated convergence
theorem, 307

Fatou’s lemma, 307

functions, arbitrary, 298

functions, simple, 297

monotone convergence
theorem, 307

properties, 300

Riemann vs. Lebesgue, 277

interior, 115

inverse function theorem, 257,
261, 266–275

inverse image, 105

Jacobian, 226–233

Lp spaces, 129

language, 40

Lebesgue integration, 295–301

Lebesgue measure, 284

Legendre-Fenchel transform,
338

level set, 238, 266

regular, 239

regular, 241

regular value, 239–241
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lim inf, 112, 305

lim inf, 305

lim sup, 112, 305

lim sup, 305

linear maps, 159

linear subspace, 171

linear vs nonlinear, 188

linearly independent, 171

Lipschitz function, 73

Lipschitz functions, 71, 236,
311, 355

Lipschitz graph, 360

little o of h, o(h), 159, 221, 264
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44, 48

lower semicontinuity, 112

µ-almost everywhere, 357

k-manifold in Rn

tangent space, 263

k-manifold in Rn, 262

matrix
Hermitian, 182

Jacobian, 226–233

normal, 182

positive definite, 182

self adjoint, 182

symmetric, 182

matrix representation of linear
map, 173, 174

maximal degree, 120

mean value theorem, 238, 243,
245

measurable function, 298

measurable functions, 301

measurable sets, 282

measure theoretic boundary,
386

measures
approximation, 291

Borel, 291

Borel regular, 291

Caratheodory criterion,
292

Hη, 286

Hausdorff, 286, 290

Hausdorff, informally, 64

Ld, 284

Lebesgue, 284

Lebesgue, informally,
56–63

locally finite Borel, 377

mapping measures,
informally, 65–71

measures, informally, 65

outer, 282

properties, 283

Radon, 291

regular, 291

Medtner, The March of Paladin,
41

metric, 103

metric space, 103–124
definition, 104

minimalism, 13

Monarch Motel in Moscow,
Idaho, 45

monotone convergence
theorem, 307

Morgan, Geometric Measure
Theory: a Beginner’s
Guide, 342

music, 39

Navier-Stokes equations, 94

norm
BV seminorm, 207

in Rn, 214

of a linear map, 175

of linear operator, 255

vector, 175, 322

normed vector space, 120

null space, 172

Nyquist, Harry, 46
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ω(η), 285

o(h), 159, 221, 264

open ball, 104

open set, 104

operator
exponential, 255

norm, 255

orthogonal, 177

orthogonal basis, 177

orthogonal projection, 177

orthogonal subspaces, 177

p-norm of a function, 157

partial differential equations,
92

path length spaces, 117

poetry, 39

problems and exercises
suggested strategy, 15

proofs
intuitions, 1st and 2nd

order, 33

playfulness, 30, 31

their role and use, 37

why trauma is relevant, 30

pseudo-differential operators,
88

QR decomposition, 180

r-thick measure theoretic
boundary, 385

r-thick topological boundary,
385

Rad Labs in Boston, 48

Rademacher’s Theorem, 77,
311, 357

rectifiable
C1 approximation of

rectifiable sets, 358

k-rectifiable, 359

k-rectifiable measure, 377

(Hk,k)-rectifiable, 360

reduced boundary, 386

regular value, 239–241

regularity, informally, 73–77

Richter, On the Nature of
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σ-algebra, 283

Sard’s theorem, 249–254, 315

separability, 110

sequentially compactness, 110

set of finite perimeter, 384, 387
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Shostakovich, Piano Concerto II,
41

silos
their negative effect, 49

Simmons, An introduction to
Topology and Modern
Analysis, 213

simple functions, 297

singular value decomposition
(SVD), 179

Smith, A Primer in Analysis, 247

Steele, The Cauchy-Schwarz
master class, 168

stochastic flows, 98

stochastic geometry, 87
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Stokes theorem, 241, 242, 340

subdifferential, 334

subgradient, 334

summable, 300

sup, 108

support of a measure, 378

supporting hyperplane, 333

supremum, 108

SVD, see singular value
decomposition, 179

r-thick measure theoretic
boundary, 385

r-thick topological boundary,
385

tangent cone, 347

approximate or measure
theoretic, 350–352

weak tangent k-plane, 352

tangent space, 263

Taylor series, 243–249

test functions, 303

topological boundary, 115, 385

topological space, 122

open sets, 122

totally bounded, 109

transverse intersections,
331–332

trauma, 30

triangle inequality, 103

upper semicontinuity, 112

vector spaces
independent basis, 171

linearly independent, 171

vector fields, 90

vector norm, 175
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vector norm, 175

affine subspace, 171

inner product, 176

linear subspace, 171
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