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Abstract

This report presents total variation (Ti ) regularization applied to tomographic

reconstruction of the BC04 (British calibration object #4) . We outline some basic

concepts of TV and modifications necessary for successful tomography . Our basic

approach considers a 3D reconstruction to be a compilation of independent 2D slices .

Each method is applied to proton radiography areal density data supplied by P-25 from

experiments completed at LANSCE . Reconstructions are not yet quantitatively analyzed

because of the lack of object metrology . Nevertheless, TV regularized reconstructions

are shown to be superior to the filtered backprojection solution and prior-regularized

SVD based solutions in terms of local density determination and density discontinuity

preservation . In addition the TV solution naturally suppresses reconstruction noise and

multiple-view placement artifacts . Ongoing and future improvements are discussed .



1 . Introduction

For decades, tomography methods have enjoyed great successes in medica l

imaging . Accurate inte rior density and material maps of the human body can be obtained

in a matter of an hour . These successes, however , rely heavily on the availability of

hundreds of transmission radiographs at different viewing angles . Advanced radiography

facilities at LANL, both present and future, however , have at most several views . The

sparsity of available data is responsible for a large ambiguity in a reconstructed object

(the projection operator has a large null space) . The central problem in sparse-data

tomography is to reduce this ambiguity through principled regularization .

Previous work proposed the use of a prior-knowledge based approach that utilize d

a singular value decomposition (SVD) description of the projection matrix. For certain

types of objects and often minimal prior knowledge the results were quite good .

We begin with a discussion of LANSCE proton radiographic data and the test

object used in this study. Then we describe TV outlining a simple approach for use with

radiographic data . Next, a results section presents the various reconstructions and

comparisons with the test object . Concluding remarks discuss the merits of the

reconstructions and point to possible future improvements .

2 . Test Object and Proton Radiograph Data

The test object for this study is the British calibration object designated BC04 . A

schematic drawing is shown in Fig . 1 . It consists of an aluminum (p = 2 . 71 g/cm) body

and a central insert is made of lead (p = 19 .3 g/cm 3). The object is solid except for the

two small cone shaped cavities within the lead inse rt . Solid lines delineate the material

boundaries . This drawing was made from the best-available data provided to us and can

be considered approximately to scale . The figure also shows three 2D slices (horizontal

dashed lines) used for all example reconstructions . In addition, the vertical dashed line

and lower case roman letters indicate locations of density lineouts also used to compare
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reconstruction methods

The BC04 was chosen because proton radiographs of this object exist for 30

separate views from experiments at Line C at LANSCE . The beam energy for the

experiments was approximately 800 MeV . The raw data exists as particle counts or beam

intensities at each detector pixel . We currently rely on P-25 to provide the conversion to

areal density, which we then use in density reconstructions . We re-binned the data (using

linear interpolation) from 1249 data values per line to 208 data values per line . The

object reconstructions were performed on a 208 by 208 voxel grid for each slice . These

dimension reductions are currently necessary for computational efficiency on a desktop

computer. It is not a limitation of the method .

This report considers several 2D slices of the BC04 data . A full 3D

reconstruction can be composed of stacked 2D reconstructions or by considering the full

3D solution. At present the 3D construction is too computationally intensive for detailed

studies . The reconstructions also ignore any problems associated with outscatter and

chromatic limbing; as well as any scattering effects not accounted for in the data

conversion from intensity to areal density .

3 . Total Variation Regularizatio n

Our choice for regularizing tomographic reconstructions is total variation (TV )

because it favors the piecewise smooth solution that projects to the given noisy data to

within some tolerance . TV regularizations preserve discontinuities in density if they are

consistent with the data . One natural consequence of TV regularization is the

suppression or elimination of small-scale features in the reconstruction . Such features

include anything on the order of the size of a voxel, including noise and object te xture .

For radiography applications we utilize a generalized form of the standard TV

formulation given by

min
Iox IdA +z~~x-

41

z j (1 )
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where P is the linear projection operator connecting the object space X to the data space,

x is a reconstruction, d is the noisy data, and a is a weighting parameter . The object x is a

collection of densities on a square voxel grid of known size . The data d is a collection of

projected masses on pixel arrays of known size and orientation . The projection operator

P is taken to be the linear geometric projection assuming a plane parallel beam

experiment . The parameter a can be estimated from some knowledge of the data noise

characteristics . For example, if the noise is additive Gaussian with mean zero and

standard deviation s we have a = s 2 . In general , for radiography applications the noise is

expected to be Poisson with variance dependent upon intensity . For this analysis we

assume that the noise is reasonably well described by a single variance s 1 .

This regularization differs from a typical image denoising application in that th e

data fidelity constraint (last term in Eq . 1) is applied to a linear projection of the image

rather than on the image itself. We utilize the Lagged Diffusivity Fixed Point

minimization method given by Vogel [ 1] to solve Eq . 1 . In this framework a se rves as a

Lagrange multiplier .

3 . Reconstruction Method s

Five reconstruction methods were applied to each slice . We have described some

cases previously [2], but we include brief descriptions of all for completeness .

Fi ltered Backprojec t ion (FPB) The filtered backprojection solution is obtained using

the publically available Matlab code of Adel Faridani [3] . A ramp filter was used and the

result was mass corrected .

Noise-constrained singular value decomposition (SVD) The projection matrix is

partially inverted using a truncated set of singular vectors corresponding to the singular

value set Q; <_ sQ. . In this way we reconstruct object features without nois e

amplification . This noise-level constrained inversion is the best low-dimensiona l

reconstruction in the absence of prior knowledge and regularization schemes and
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reconstruction quality is relatively insensitive to the choice of realistic s [4] .

Nonnegative prior SVD (pSVD) The nonnegativity solution is obtained through an

iterative process xnew -'xold + (I- P)y with prior y = max(0, xold) . The iteration is

terminated when I~x - d IIZ ~ 2s 2 . This reconstruction has the advantage of nudging the

solution toward a data-satisfying positive-density object . The solution is also desirable

over the truncated SVD solution because it reduces 2v-fold symmet ry artifacts ( from v

independent views) and more accurately identifies sharp density discontinuities [5] .

Total variation prior SVD (TV-SVD) A TV regularized solution (Eq. 1) of large awas

used as a prior estimation within a pSVD iterative solution (described above) . While this

method does not guarantee good noise statistics in the final solution, the good quality of

the prior leads to a good solution in practice .

Noise-constrained TV (TV) For this method, the parameter a is chosen so that once the

minimization in Eq . 1 is complete we have IIPx - d llz ~ 2s2 = 2a . In this way , not only

do we obtain a solution with low variation but the projection of the solution differs from

the noisy data by a variance that is known to be approximately correct . This procedure is

recursive; the minimization must be performed several times for different values of

a before the desired reconstruction is determined .

4 . BC04 Reconstructions and Analysi s

Three 2D slices of the BC04 were chosen for reconstruction. Figure 2 shows

representative proton radiographs with dashed lines indicating the slice locations .

Reconstructions of the three selected slices by the five methods and for 12, 18, 24, and 3 0

views are shown in Figs . 3 through 14 .
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4.1 General Observations

As expected, all slices are best reconstructed using more views . Visually, only

slice-A is well reconstructed with only 12 views . Other slices continue to improve with

added views even with 30 views . Slice-A is reconstructed well because it contains only a

single material . The density 'of the inner material (Pb) is poorly recovered; this issue is

discussed later . Methods that incorporate regularized inversions perform better in

identifying material boundaries and regions of constant density . In addition , TV methods

eliminate 2v-fold artifacts . Finally, we note the `shadows' cast by the dense central

object in Fig . 10e . These reconstruction anomalies appear to be related to some

systematic problem with the data (possibly a data centering issue?) since reconstructions

of other objects do not show this effect .

4.2 Density Determinatio n

For density determination two major assumptions are made . First, the areal-

density data is assumed to be conve rted from intensity radiographs according to the best

available calibration data for aluminum . This means that our reconstructions are density

maps of aluminum (even if unphysical) . Second , because we do not have the actual

detector pixel size, we allow a single density scaling parameter . This essentially lets us

choose the normal density of aluminum (2 . 71 g/cm 3) to correspond to the reconstruction

intensity of the central portion of Fig . 6d . Thus, the mean aluminum density (everything

not Pb) for each picture is bound to be quite close to the correct density , but variations

will depend upon the particular reconstruction method . The density of the insert is

reconstructed as if it were also made of aluminum .

Several density lineouts are shown in Figs . 15-17 . The lineout locations ar e

indicated by the points in Fig . 1 labeled by lower case roman letters . For example, Fig.

15 shows lineout c which is within slice C and along the path indicated by the ve rt ical

dashed line of Fig . 1 . The various colors indicate reconstructions by the various methods :

(cyan) FBP; (black) SVD; (blue) pSVD; (green) TV; and (red) TV-SVD . These lineouts

show a definite left-to-right density increase indicating a weakness in the conversion

process from radiograph intensity to areal density data . In spite of the apparent data

problems , the TV-SVD reconstructions have several nice properties : excellent edge
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detection; good noise reduction ; and zero-density retention in regions of expected zero

density . The pSVD solution has better zero-density retention because this feature is built

in to the driving prior, but has poor quality (s imilar to FBP) in regions of nonzero density.

Lead (Pb) densities are not recovered in this analysis, as discussed previously .

5 . Conclusions and Future Wor k

Overall, TV-based regularized reconstructions preserve desirable object features such as

density discontinuities while reducing noise and limited-number-of-view artifacts . We

are prevented from further quantitative analysis by lack of quantitative metrology and

experiment details . Also, we have not attempted a true multiple material reconstruction .

We continue to explore gradient-based regularization methods that incorporate minimal

prior knowledge . Notably, we are exploring adaptive methods for edge retention and

density preserving data fidelity. These methods are currently implemented in Abel

inversion tomography settings and are being explored as possible candidates for 3 D

object reconstruction.
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Figure 1 . Schematic drawing of the BC04 . Solid lines delineate between differen t

materials . The outer material is aluminum (Al) and the central insert is lead (Pb) with

two machined voids . The top illustration is a horizontal plane slice through the BC04

center; the bottom illustration is a vertical plane slice through the center. Three

horizontal dashed lines, labeled by capital roman letters , indicate 2D slices used for

example reconstructions . Lower case roman letters and the vert ical dashed line indicate

locations of density lineouts used to compare reconstruction methods .
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Figure 2 . Three representative proton radiographs of the BC04 are shown for o rientation

angles of 0 , 48 and 90 degrees, respectively . The dashed lines (A, B , and C) indicate the

horizontal slices used in the reconstruction algorithms .
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Figure 3 . BC04 slice-A 12-view reconstructions : (a) FBP; (b) SVD ; (c) pSVD; (d) TV ;

and (e) TV-SVD .

11



Figure 4 . BC04 slice-A 18-view reconstructions : (a) FBP ; (b) SVD ; (c) pSVD ; (d) TV ;

and (e) TV-SVD .
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Figure 5 . BC04 slice-A 24-view reconstructions : (a) FBP ; (b) SVD ; (c) pSVD ; (d) TV ;

and (e) TV-SVD .
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Figure 6 . BC04 slice-A 30-view reconstructions : (a) FBP ; (b) SVD ; (c) pSVD ; (d) TV ;

and (e) TV-SVD .
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Figure 7 . BC04 slice-B 12-view reconstructions : (a) FBP ; (b) SVD ; (c) pSVD; (d) TV,

and (e) TV-SVD .
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Figure 8 . BC04 slice-B 18-view reconstructions : (a) FBP; (b) SVD; (c) pSVD ; (d) TV ;

and (e) TV-SVD .
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Figure 9 . BC04 slice-B 24-view reconstructions : (a) FBP ; (b) SVD ; (c) pSVD, (d) TV ;

and (e) TV-SVD .
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Figure 1 0 . BC04 slice-B 30-view reconstructions : (a) FBP ; (b) SVD ; (c) pSVD ; (d) TV ;

and (e) TV-SVD .
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Figure 11 . BC04 slice-C 12-view reconstructions : (a) FBP ; (b) SVD ; (c) pSVD ; (d) TV ;

and (e) TV-SVD .
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Figure 12. BC04 slice-C 18-view reconstructions : (a) FBP; (b) SVD ; (c) pSVD, (d) TV ;

and (e) TV-SVD .
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Figure 13 . BC04 slice-C 24-view reconstructions : (a) FBP; (b) SVD; (c) pSVD; (d) TV ;

and (e) TV-SVD .

21



Figure 14 . BC04 slice-C 30-view reconstructions : (a) FBP ; (b) SVD ; (c) pSVD ; (d) TV ;

and (e) TV-SVD .
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Figure 15 . Density lineout c of the reconstructions in Fig . 14 . The five colors represen t

the following reconstruction methods (cyan) FBP ; (black) SVD; (blue) pSVD ; (green)

TV ; and (red) TV-SVD .
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Figure 16 . Density lineout h of the reconstructions in Fig . 10 . The five colors represent

the following reconstruction methods (cyan) FBP ; (black) SVD ; (blue) pSVD ; (green)

TV ; and (red) TV-SVD .
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Figure 16 . Density lineout a of the reconstructions in Fig 6 . The five colors represent the

following reconstruction methods (cyan) FBP ; (black) SVD; (blue) pSVD; (green) TV;

and (red) TV-SVD .
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