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Abstract

This paper introduces improvements to a now classical family of image de-
noising methods through rather minimal changes to the way derivatives are
computed. In particular, we ask, and answer, the question “How much can we
improve the common denoising methods by local, completely non-parametric
modifications to image graphs?” We present the concept of non-parametric
characteristic graph representations of images and detail two such graph con-
structions. Their use in image denoising is demonstrated within a regularization
framework. The results are compared with those of more traditional approaches
of Tikhonov, total variation and L1TV regularization. We show that in some
denoising scenarios our methods perform more favorably in preserving intensity
levels and geometric details of object boundaries. They are particularly useful
for denoising images with both smooth and discontinuous intensity variations,
preserving detail to the pixel level.

Mathematics Subject Classification: 65D18, 68U10, 05C90.

Keywords: Image Restoration, Denoising, Graph Regularization.



running head 2

1 Introduction

The methods of Mumford and Shah [16] and Rudin, Osher and Fatemi [19] are two
of a small handful of image processing methods introduced about two decades ago
which opened up the area of PDE and variational methods in image processing.
Since then, an enormous amount of work has followed, inspired by their general
approach.

A number of the most important approaches are special cases of

u∗ = arg min
u

(‖u− f‖q
q + α‖∇u‖p

p

)
, (1)

where f ∈ Rn is a noisy image of n pixels, 1 ≤ p, q < ∞ (typically), and u and
u∗ are candidate and optimal denoised images, respectively. The data fidelity and
regularization terms are weighted by the selection of a scalar α.

The popular H1 realization of (1) (p = 2, q = 2) was first implemented in the
work of Tikhonov (See [22]). The regularization enforces smoothness in u and is
equivalent to a finite-time application of the heat equation to the noisy image. The
net effect is to reduce all high-frequency content such as noise. One undesirable
feature is that sharp intensity boundaries are smoothed.

The total variation (TV) realization (1) (p = 1, q = 2), or ROF model [19],
gained rapid popularity from its ability to produce denoised images that retain sharp
intensity boundaries. While successful for visual presentation, there are known side
effects [20]. First, absolute intensity levels are altered. This is most obvious for
images of piecewise constant intensity. Second, intensity regions of smooth variation
become stair-stepped. Third, shapes in images are altered by elimination of high
boundary curvature, reducing object perimeter.

While (1) has been highly successful and ubiquitously applied in image process-
ing, the side effects arising from the regularization and choice of p are problematic
for many applications. Several approaches have been taken in order to address these
issues. Additional regularization based on object boundary lengths was proposed
by Mumford and Shah [16]. This approach requires an additional functional weight
parameter and assumes objects constrained by minimal perimeters.

Another approach proposed a variable p. See [4] and the developments in [13,
10, 5]. In this approach p is made a function of the gradient of the image. While
this adds to the analytic complexity of the functional, the stair-stepping is reduced.

The L1TV approach (p = 1,q = 1), introduced in its continuous version by Chan
and Esedoḡlu in [8] after its initial discrete study by Alliney [3] and Nikolova [18],
does a much better job of contrast preservation. This particular approach has gen-
erated continued interest; see for example [2, 15, 23].

Chartrand [9] has shown that solving the nonconvex optimization problem for
0 < p < 1 yields improved results for shape and intensity preservation relative to
TV. These results hold for images that can be represented sparsely in the gradient,
that is, piecewise constant intensities.

Recently, non-local means and diffusion geometric methods [6, 12, 21] have gen-
erated significant improvements in denoising results by redefining what it means to
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be a neighboring pixel. It is to the effect of image graph modifications that we now
turn.

One way to view all the denoising methods is as operators on graphs where
the values at vertices are pixel intensities and the edge weights are a function of
some metric. Let G0 denote the graph in which each pixel is connected to four
neighbors (up, down, left, right). We will denote the fully connected graph, with
n(n−1)

2 edges connecting the n pixels, by G0. In the classical denoising case, the
discrete version of (1) leads to p-Laplacian flows on G0. In the case of non-local
means, edge weights might be taken to be 1

k , where k is the number of nearest
neighbors. The nearest neighbors are determined by considering distances in the
space of pixel neighborhoods. This leads to a completely different graph which is
non-local with respect to the natural metric suggested by the x-y image distance.

In this paper we take a different approach and ask how much improvement can
be gained through very simple, even rather minimal perturbations to G0. We intro-
duce a new method modifying the classical image graph G0 through non-parametric
decimation of the graph. This generates a subgraph K ⊂ G0 on which we can
use many of the classical and less classical denoising methods. The results show a
marked improvement with respect to edge preservation, contrast preservation, and
staircasing.

A critical point is that we are not examining what is the best we can do through
a cleverly weighted subgraph of G, but rather what can be done using graphs K close
to the usual graph G0. Accordingly, we compare our results to classical methods
applied to images implicitly using G0, not the various subgraphs of G that the newer
methods use.

Viewed another way, we simply remove edges from G0 that connect distant pixels
(but we do this in a non-parametric way) while the newer methods completely
redefine what it means to be close (but in a parametric way). That our graph
modifications are completely non-parametric, accomplished with no input other than
the measured image, is an attractive feature that reduces the number of parameters
that must be chosen to denoise an image.

Finally, we mention that because our goal is not to create the best denoising
algorithm, but rather see what can be gained by minimal perturbation to rather
classical methods, we do not consider various uses of sparse methods (but see for
example [1]).

2 Approach

Consider the discretized image gradient of (1). Let ui,j be the image intensity at
image pixel location (i, j). A standard forward difference gradient approximation is

|∇ui,j | ≡
√

(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2. (2)

The first (second) difference term in (2) is the vertical (horizontal) gradient. We
impose the Neumann boundary condition ∇ui,j = 0 if either i or j causes ui,j to fall



running head 4

outside of the image.
This gradient can be represented as an operation on the graph G0 = (V0, E0)

with vertex set V0 = {vi,j} corresponding to all image pixels, and edge set E0 = {ek}
containing all pixel pairs that share a pixel edge (not a graph edge). We note that vi,j

is a graph vertex, while ui,j = u(vi,j) is the image intensity at location {i, j}. This
graph has been called the grid graph [7] and is recognized as that of a fully connected
Von Neumann neighborhood (see [17]). Quite simply, G0 is the fully-connected
nearest (geographic) neighbor graph in the 2-d image space. Figure 1(b) illustrates
G0 for a small sample image. For image applications, we consider the weighted graph
with edge weights given by wk = |ui1,j1 − ui2,j2 | for each edge ek = (vi1,j1 , vi2,j2),
the absolute value of the image intensity difference associated with the vertex pair
connected by the edge.

The denoising problem is now represented as

u∗ = arg min
u

(‖u− f‖q
q + α‖∇K u‖p

p

)
. (3)

where the gradient operator is applied to a graph K with weights W . The funda-
mental graph, K = G0, is the one typically applied. We will consider subgraphs
K = {V = V0, E ⊂ E0} ⊂ G0 which we consider to be characteristic of images for
denoising purposes. In the next section we will detail two such graphs.

The optimization problem described in (3) is nice: it is convex for (1 ≤ p, q ≤ ∞).
Though the regularization term suffers from a degeneracy yielding a null space with
dimension equal to the number of connected components of the graph, the data
fidelity term keeps the functional coercive.

In practice, the gradient computation is carried out over the fundamental graph
G0 with imposed zero edge weights that effectively define the subgraph of interest.
More precisely,

‖∇K u‖p
p =

∑

wk∈W

|wk|p. (4)

Note in particular that we are using the anisotropic version1 of (3) here: this is the
only version that makes sense on the graph – we do not have differences in the x and
y directions at every node in the reduced graph K unless the graph is the complete
graph G0.

We utilize the Lagged-Diffusivity method for solving (3) together with an ap-
plication of the discrepancy principle for choosing the constant α [24]. We choose
this approach for its general applicability to p > 0, q > 0, though we limit our
presentation to three typical scenarios: Tikhonov regularization (H1) [22] where
(p, q) = (2, 2); total variation regularization (TV ) [19] where (p, q) = (1, 2); and
(L1TV ) [8] where (p, q) = (1, 1). Lezoray, et al. [14] present a general method for
solving (3) on graphs of arbitrary topology. They also present a variety of results for
color image denoising using the fundamental graph G0. Their focus is on compu-
tational aspects of very general discrete graph-based denoising. Our main objective

1In the case of G = G0, the isotropic version is given by
P

i((u
i
x)2 + (ui

y)2)p/2 instead of the
anisotropic analog given by

P
i(|ui

x|p + |ui
y|p)
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is the construction and application of characteristic graphs that are natural choices
for image processing applications.

3 Characteristic Graphs

In this section we present two new characteristic image graphs, detail how they
are constructed, and briefly discuss our expectations in denoising applications. An
example of each graph is shown in Figure 1 as computed from a simple example
image.

Figure 1: Left to right: A simple noisy test image; and the corresponding three
characteristic graphs: the full graph or grid graph G0, the truncated Kruskal algo-
rithm graph with next-nearest neighbor edge extension K1, and the vertex inclusion
graph, K2.

In particular, our subgraphs are defined by features that are perturbations from
the standard local graph structure. They have the following properties.

1. A graph should preserve spatial information. Distinct image regions should
only be able to influence each other through neighbor pixel paths through the
graph. By choosing graphs as subgraphs of G0 this requirement is automati-
cally met.

2. A graph should naturally detect image intensity content. In image regions
of relatively small intensity variation, the graph should be highly connected.
Conversely, graphs should have few or no edges corresponding to neighboring
pixels with a large difference in intensity.

3. Graph construction should be non-parametric utilizing only the image inten-
sity information without relying on user judgement or prior information.

These subgraph properties are intended to inspire nonparametric extensions to
local denoising methods posed as in (1).

3.1 K1: Truncated-Kruskal Graph

We introduce a graph K1 based on Kruskal’s algorithm for constructing a minimum
spanning tree of an arbitrary graph[11]. The tree construction is prematurely ter-
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minated when all vertices are included and then additional graph edges are included
to improve graph density.

1. Begin with an empty graph V = {} and E = {}.
2. Add to E the edge of minimum weight in E0 that does not create a cycle in

(V,E). Add the corresponding vertices to V that are not already in V .

3. Repeat step 2 until V = V0.

4. Find the edge of minumum weight in E0 that does not create a cycle in (V, E).
Set wcut equal to the corresponding edge weight.

5. To each vertex of degree 1 add to E the associated edge from E0 that (a) has
smallest weight, (b) is not already in E, and (c) if the edge weight is less than
wcut.

The first four steps of the algorithm retain the time complexity of Kruskal’s algo-
rithm, O(|E|log |V |). The last step requires a O(|E|log |E|) sorting step to determine
the minimum weight edge connected to each vertex. Due to the special structure of
the grid graph derived from the image, we know that |E| is bounded from above by
4|V |, so this complexity is equivalent to that of Kruskal’s algorithm.

The characteristic graph K1 will attempt to prevent graph connections across
pixel neighbors of significantly different intensities. The density may be low relative
to the grid graph G0, and the connectivity even in regions of like intensity may be
circuitous or lacking. The third image in Figure 1 illustrates these properties. Note
the somewhat circuitous graph paths one must often take to traverse from one pixel
to its neighbor even if the intensities are similar. The best graph property is the
absence of any graph edges that would connect object regions to background regions.
It can be reasonably expected that this intensity discontinuity discrimination will
be fairly robust to noise.

3.2 K2: Vertex Inclusion Graph

We also introduce the Vertex Inclusion Graph K2 in order to address the potential
drawbacks of K1, low density and significant dis-connectivity. K2 is constructed by
including all edges of weight less than or equal to a cutoff value non-parametrically
determined from a vertex inclusion condition.

1. Begin with an empty graph V = {} and E = {}.
2. Add the edge of smallest weight from E0 to E that is not already in E, and

the corresponding vertices from V0 to V that are not already in V .

3. Repeat step 2 until V = V0.

4. Add all edges from E0 to E that are of equal weight to the largest edge weight
in E.
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Graph K2, like graph K1 can be disconnected across image intensity discontinuities.
Also, we expect a significant number of graph edges in regions where the intensity
variations are governed by noise. These properties are evident in the fourth image of
Figure 1. Note both the absence of edges that cross the object-background boundary
and the high graph density relative to K1. For very noisy images or images with
salt and pepper noise, K2 can produce a nearly fully connected graph K2 ∼ G0. In
these cases, there is no expected advantage to using K2. Like the construction of
K1, this approach has logarithmic time complexity of O(|E| log |E|) due to sorting
the edges by edge weight.

3.3 Discussion on Parametrization

These graphs are considered to be characteristic representations of images because
they satisfy, in our estimation, the criteria given at the beginning of this section.
One might argue that these graph constructions contain hidden parameters. For
example, why did we choose to add edges only to leaf vertices in forming K1? And,
why did we specify only second nearest neighbors instead of, say, third nearest?
Parameters such as these are of a different nature than more intrusive and application
specific parameters such as edge weight thresholding, graph density thresholding,
and local graph construction based on prior assumptions. We contend that our
choices are related primarily to the desired structure of the graphs independent of
the consitituent intensity distributions of the images from which they are derived.
Our graphs are intended for very general application because they capture spatial
and intensity connectivity for a large class of images.

4 Results

We now present some specific image denoising results on several test images. The
approach is to illustrate how the use of characteristic image graphs can provide
improved intensity level and geometric content preservation relative to standard
local methods.

Figure 2 shows denoising results for a simple image of piecewise constant inten-
sities and several geometric features. The images at top are the clean image, a noisy
image with additive Gaussian noise of σ = 0.3, and the color scale for all images
in the figure. The clean image contains four overlapping objects at intensity values
(1, 2, 3, 4) on a background of intensity zero. Nine denoised images are shown in the
lower part of the figure, corresponding to the realizations of the three regularization
scenarios (L1TV , TV , H1) applied using the three graphs (G0, K1, K2).

The piecewise constant intensities in this test image suggest the beneficial use
of total variation based denoising. The standard result (TV -G0) attains relatively
sharp boundaries and improved noise suppression over H1-G0. One residual effect
is intensity stairstepping, seen as dark green areas bordering intensity transition
regions. There is also some geometric information loss in regions of high curvature
(small features), observed as boundary definition loss (a) between the dark green
rectangle and the blue circle and (b) of the bottom of light blue triangle below
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the magenta circle. The use of our characteristic graphs alleviates these problems.
Both TV -K1 and TV -K2 nearly eliminate stairstepping and are much better at
preserving the geometry of the original objects in the image. For this test image,
L1TV denoising produces very similar results to those of the corresponding TV
results. Close examination reveals a greater degree of regional stairstepping with
K1 over K2, as expected. It is also interesting to note how well H1 methods perform
using the graphs K1 and K2. Because these characteristic graphs were able to define
lengthy connected stretches of object boundaries, a heat kernel smoothing approach
is fairly successful in regional smoothing with significant sharp intensity boundary
preservation.

Finally, we consider object intensity level recovery for the three TV based denois-
ing methods. How accurate are the object intensities in denoised images? Table 1
lists the recovered pixel value mean and standard deviation over same the regions
defined by the noiseless image. We find that intensity values are more accurately
recovered using K1 or K2, especially for the highest and lowest values where G0
based methods are expected to fail. No method accurately recovers the intensity
level of the smallest object feature at intensity 1. The characteristic graph based
methods show noticeably smaller variances in intensity. This is due to their ability
to significantly reduce stairstepping in intensity discontinuity regions.

G0 K1 K2

0.042(0.079) 0.003(0.028) 0.002(0.018)
0.669(0.264) 0.564(0.099) 0.515(0.116)
1.985(0.170) 2.036(0.055) 2.037(0.017)
2.957(0.110) 2.992(0.051) 3.007(0.073)
3.948(0.088) 3.994(0.023) 3.992(0.007)

Table 1: Intensity preservation comparison for TV denoising examples in Figure 2.
The intensities in the noiseless figure are the integer values (0, 1, 2, 3, 4). This table
gives the recovered pixel value mean and standard deviation over same the regions
defined by the noiseless image.

Figure 3 shows denoising results for an image of piecewise smooth intensity
variation with sharp boundaries. The images at top are the clean image, a noisy
image with additive Gaussian noise of σ = 0.16, and the color scale for all images in
the figure. The clean image contains a Gaussian bump with a sign change across a
sinusoidal boundary. The intensity difference across the boundary approaches 2 near
the image center and is much less than 2 near the left and right image boundary.
Nine denoised images are shown in the lower part of the figure, corresponding to the
realizations of the three regularization scenarios (L1TV , TV , H1) applied using the
three graphs (G0, K1, K2).

This test image illustrates the dilemma of how to choose an appropriate regular-
ization scenario when the image intensity is known to have both smooth variations
and sharp discontinuities. An H1-G0 approach may denoise well and retain smooth
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Figure 2: Denoising results for a simple image of piecewise constant intensities and
several geometric features.

intensity variations, but at the cost of blurring discontinuities. A TV -G0 approach
will perform much better at preserving the discontinuities, but will compromise the
smoothly varying features, especially in the presence of noise. Our approach is to
apply H1-K2 which does an excellent job of preserving both image features. The
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denoised image is everywhere smoothly varying except across a well-defined sharp
discontinuity boundary. The TV -K2 and L1TV -K2 approaches have even better in-
tensity discontinuity preservation but at the cost of regional intensity stairstepping.
The K1 graph based results also show excellent intensity discontinuity preservation,
though the image intensities show a large degree of regional stairstepping.

Figure 4 shows denoising results for an image of piecewise smooth intensity
variation with sharp boundaries and high curvature geometric features. The images
at top are the clean image, a noisy image with additive Gaussian noise of σ = 0.12,
and the color scale for all images in the figure. The clean image contains a Gaussian
bump with a unit jump within a star-shaped region. The star region has features of
single pixel width. Nine denoised images are shown in the lower part of the figure,
corresponding to the realizations of the three regularization scenarios (L1TV , TV ,
H1) applied using the three graphs (G0, K1, K2).

This test image is similar to the previous image in that the intensities are
smoothly varying except across some discontinuous boundary features. However,
the object now has very narrow features. We would like to preserve (a) smooth in-
tensity variation, (b) sharp intensity discontinuities, and (c) geometric features at all
length scales. The standard H1-G0 approach succeeds only at the first. The TV -G0
approach succeeds only at the second. The L1TV -G0 approach also preserves sharp
intensity discontinuities, but dramatically fails to preserve the geometry and small
length scales. Our H1-K2 approach succeeds on all points. The other denoising
results are shown for comparison, though it is notable that the K1 and K2 graph
methods are very good at preserving geometric information in this particular low
noise example.

Figure 5 shows denoising results for the same images as in Figure 4 but with a
larger noise amplitude (σ = 0.4). The images at top are the clean image, a noisy
image, and the color scale for all images in the figure. Nine denoised images are
shown in the lower part of the figure, corresponding to the realizations of the three
regularization scenarios (L1TV , TV , H1) applied using the three graphs (G0, K1,
K2).

Under these higher noise conditions, the standard G0 based methods perform
similarly to the previous case (Figure 4) but with greater object distortion, both in
loss of small length scale features and object boundary preservation. The K2 based
results show somewhat improved object boundary preservation but are qualitatively
similar to the G0 results. This is because the K2 graph becomes nearly complete in
the presence of noise of standard deviation comparable to half the size of the actual
intensity discontinuity. The K1 based methods do a better job of object boundary
preservation because the graph construction is more robust to noise. The TV -K1
and L1TV -K1 results show the best object/background discrimination including
some of the small length scale features.

Figure 6 shows denoising results for a silhouette image with objects containing a
variety of length scales. The images at top are the clean image, a noisy image with
additive Gaussian noise of σ = 0.15, and the color scale for all images in the figure.
The clean image contains a binary image of berries and branches with important
length scales from one to 20 pixels. Nine denoised images are shown in the lower part
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Figure 3: Denoising results for an image of piecewise smooth intensity variation with
sharp boundaries.

of the figure, corresponding to the realizations of the three regularization scenarios
(L1TV , TV , H1) applied using the three graphs (G0, K1, K2).

The TV based results illustrate the improved sharpness of the boundary repre-
sentation with K1 and K2 over the typical G0. Once again this is a consequence of
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Figure 4: Denoising results for an image of piecewise smooth intensity variation with
sharp boundaries and high curvature geometric features – low noise realization.

K1 and K2 having few graph connections across the object/background boundary.
The contrast retention is better as well, the differences between the pixel mean values
between object and background for each case are: G0, 0.935; K1, 0.979; K2, 0.981.
The feature retention with L1TV is better using K1 or K2 relative to G0; note the
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Figure 5: Denoising results for an image of piecewise smooth intensity variation with
sharp boundaries and high curvature geometric features– high noise realization.

disappearance of the narrowest braches in L1TV -G0. It is worth noting that both
K1 and K2 graphs are not completely disconnected across all object/background
boundaries. This is most evident in examining H1-K1 and H1-K2, in which the
areas of boundary crossings are seen by the yellowish diffusion “clouds”.
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Figure 6: Denoising results for a silhouette image with objects containing a variety
of length scales – low noise realization.

Figure 7 shows denoising results for the same images as in Figure 6 but with a
larger noise amplitude (σ = 0.40). The images at top are the clean image, a noisy
image, and the color scale for all images in the figure. Nine denoised images are
shown in the lower part of the figure, corresponding to the realizations of the three
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regularization scenarios (L1TV , TV , H1) applied using the three graphs (G0, K1,
K2).

In this higher noise example we observe that the K2 based results are similar
to the G0 based results, again due to the high connectedness of K2 in high noise
situations. In these cases, there is good object feature recovery for the largest length
scales (berries and large branch) and noticeably worse recovery for the smallest
length scales (small branches). The small length scale loss is most pronounced in
the L1TV cases. However, the K1 based results, while similar in other respects,
show better recovery of the geometry of small length scale features relative to the
G0 and K2 counterparts. This is a consequence of the K1 graph construction being
more robust to image noise.

5 Discussion

The characteristic graphs K1 and K2 are especially useful for denoising images of
piecewise smooth content. They help to preserve intensity levels because intensity
jumps are not penalized if they are large relative to a characteristic weight deter-
mined by an appropriate construction algorithm. They also help to preserve object
boundary shape details for much the same reason. Intensity jump boundaries have
zero penalty regardless of length or curvature. Object details can be preserved down
to the pixel level. Even in the non-ideal case, where noise has allowed graph con-
struction algorithms to build links across intensity discontinuities, these links are
sparse relative to a full graph implementation and still serve to reduce distortion
effects.

Our characteristic graphs will fail to produce significantly improved results in
some cases. If images are very noisy, are corrupted by salt and pepper noise, or
contain intensity isolated pixels, then we expect the characteristic K2 graph to be
nearly as dense as the full G0 graph. This simply means that the image information
needed to construct a good subgraph, K2 ⊂ G0, is lacking. The K1 graph construc-
tion is more robust to image noise, but no graph construction method presented here
is expected to perform well when noise amplitude is comparable to discontinuous
intensity jumps within the true image. We note that our results are not expected to
be inferior to methods that employ G0.

The use of characteristic image subgraphs is general to PDE-based methods for
image processing. We have defined here example graphs and demonstrated their
potential using some simple denoising examples. Clear extensions are applications
to segmentation and texture extraction.

We have focused exclusively on non-parametric modifications to (1). Other im-
portant graphs are certainly possible that make use of (problem-dependent) param-
eters. Some examples include graphs that achieve a certain density or connectivity,
or user-defined graph construction cutoff values. We also note that there are certain
possible parametric modifications to the denoising procedure. For example, one is
tempted to employ a variable α procedure in which the characteristic graph is up-
dated as α is incrementally raised from some low value to a final value. This may
help to reduce graph connectivity across boundaries significantly obscured by noise.
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Figure 7: Denoising results for a silhouette image with objects containing a variety
of length scales – high noise realization.

6 Conclusion

We have defined two characteristic image graphs, the truncated Kruskal graph K1
and the vertex inclusion graph K2 as nonparametric extensions to local PDE im-
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age denoising methods. We have demonstrated their use by application to several
simple test images. Comparisons were made with standard TV , L1TV , and H1

denoising methods. Our characteristic graph based denoising methods demonstrate
(a) improved contrast preservation, (b) improved geometric feature recovery even
down to the pixel level, and (c) simultaneous recovery of smooth intensity variation
and discontinuous intensity jumps. The characteristic graph constructions are stable
and predictable with respect to noise type and amplitude. The K2 graph closely
approximates the full mesh graph G0 in cases of very high noise or corruption by
salt and pepper noise. The K1 graph remains relatively sparsely connected in all
noise situations but may fail to be meaningful when noise amplitude is comparable
to image feature intensity differences.
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