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When looking for cycles in data, Fourier techniques are often the
tools of choice. The are efficient, and allow one to quickly identify
the dominant periodic trends. However, they have several limitations
which we resolve.

In particular, Fourier techniques are difficult to apply when data
is irregular or missing, and they are of no use when the underlying
patterns are not periodic cycles. Our paper demonstrates how to use
a dictionary to efficiently find patterns that govern underlying data.
Once identified, these patterns can be used to compress that data, iden-
tify important features, and predict future behavior.

We start with the example (Section 4.3 of the paper) of the max-
imum daily temperature in Moab, Utah. Here we expect an annual
cycle. Given complete and regularly spaced data, Fourier techniques
work well, but what happens if the data is incomplete and irregu-
larly spaced? E.g., try to find the annual cycle from the 100 randomly
selected dates shown in the top of Fig. 1: The cycles.org analyzer in-
terpolates between missing data, introducing significant errors.
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Figure 1: Maximum daily temperatures
in Moab, Utah. The top panel shows T =
Tmax at 100 randomly selected days over
40 years showing almost no discernible
cycles. Simply knowing that a cycle
should exist allows us to extract the pe-
riod of the tropical year to within about
5 hours (black cycle in the bottom panel).
Adding more data (small blue dots in
the middle panel) makes the annual cy-
cle apparent and allows us to improve
the precision to within 50 mins, but is
not needed to find the cycle. (The dot-
ted orange line in the bottom plot shows
the cycle as extracted with 10 000 data
points. This essentially lies on top of the
cycle extracted from only 100 points.)

Our approach is to build a dictionary of cycles1 for a large set of 1 The dictionary entries are simply the
target pattern y = cos(2πt/T + φ) eval-
uated at the available dates t. There
is no need for interpolation, and the
method can be trivially generalized to
skewed cycles, or non-periodic patters,
by changing the functional form.

periods T. We then search the dictionary for the entries with the best
match. (This is the orthogonal matching pursuit algorithm described in
Section 4.1). We can also include cycles with arbitrary periods T to
form an overcomplete dictionary: one that has many more entries
than those accessible to Fourier techniques which are limited by the
length of the signal, and the sample frequency. This allows us to match
underlying signals with high accuracy.

With this approach, the 100 points in the top panel of Fig. 1, which
have no visually apparent pattern, gives a best matching period of
T = 365.2(2)days.2 Including more data makes the cycle more visible, 2 The error ±5 hour error is estimated by

repeating the process with different ran-
dom sets of 100 dates.

and improves the accuracy of the period extraction T = 365.24(2)days,
corresponding to the tropical year of 365.242 days.

https://cycles.org
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The paper discusses additional details, such as how to determine
the frequency spacing in the dictionary, but the essence is simple: Use
knowledge about the form of the underlying patterns3 to find the best

3 In this case the pattern was a cycle –
with appropriate interpolation, Fourier
techniques would most certainly find it –
but the approach here is completely gen-
eral: any pattern can be used to form the
dictionary.

match. In the paper, we refer to this as finding a sparse representa-
tion of the data: what are the few most important patterns that best
describe the data? If one knows the form of these, then one can us this
technique to find a good set of patterns from the data,4 and then use

4 Finding the good set of patterns is re-
ferred to as solving the inverse problem
in the paper.

these to make predictions.
If such knowledge is not available, one may turn to the data itself to

see if it contains any intrinsic patterns.5 In this case, the appropriate

5 This is discussed in section 3.1 where
the singular-value decomposition (SVD)
is used to extract “eigenfaces”. The
eigenfaces have no simple form: They
are certainly not cycles! Facial patterns
emerge from the data itself, and a few
(sparse) set of core patterns suffices for
applications such as facial recognition.

patterns are almost certainly not going to be simple cycles, and Fourier
methods will struggle. The approach of finding sparsity with over-
complete dictionaries, however, remains as easy to implement for non-
cyclic patterns as it does for cyclic ones.
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Figure 2: Each trading day we fit 15 cy-
cles to the stock price history from the
previous 60 trading days, and used a 6

day prediction window. We require 3

or more cycles to have periods of more
than 12 days (at least twice the predic-
tion window) together with minima or
maxima within the prediction window
in order to signal that we should buy or
sell respectively. This particular param-
eter combination avoided both 2000 and
2008 downturns experienced by the Nas-
daq index. Running this strategy from
1992 through 2021, buying and selling
full amounts, resulted in a final portfolio
value of $1 957 642, corresponding to an
annualized return rate of 13.40 % to the
11.25 % return of a single Nasdaq pur-
chase in 1992 held until 2021.

As another example, we give a straightforward proof of concept
with a one-stock-at-a-time analysis of the Nasdaq composite (ˆIXIC)
from 1992 through 2021. Fig. 2 shows the full history of the strategy,
and examples of sell and buy signals show in Fig. 3.
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Figure 3: Here is a plot of the 3 cycles
that achieved extremal values in the pre-
diction window. Left: Three maxima be-
tween 8/15/2000 and 8/23/2000 result
in a signal to sell the held shares. Right:
Three minima between 12/11/2002 and
12/19/2002 result in a signal to buy as
many shares as possible with the cash
resulting from our previous sale.

Our model has many parameters, including the lengths of the train-
ing and prediction windows, the number of cycles used to model the
historical data, and the number of cycles that must coincide before
triggering a buy or sell. These methods using dynamic combinations
of parameters to identify specific trends could be useful in combina-
tion with other methods for estimating the likelihood of upturns or
downturns, and are worth exploring further.
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More Details for the Technically Inclined

Fourier methods (cycles) are just one of an infinite family of orthog-
onal transformation methods and when we allow overcomplete, non-
orthogonal representations, we can sometimes extract information much
more effectively.

The core of this paper is an invitation to explore the information
extraction power of the sparse/low dimensional perspective through
overcomplete dictionary methods via the matching pursuit algorithm.
By sparse/low dimensional perspective we refer (roughly) to the problem
solving perspective that attempts to use relatively few basis elements
(for example, pure Fourier components) to represent solutions or in-
put data (or both). For example, more often than you might think, you
might find that a great deal (for example, 99%) of the important infor-
mation in a family of signals concentrated in a very small fraction (for
example, 1%) of the possible signals. In fact, this is the basis of data
compression – what we care about fills a tiny (small measure/low-
dimensional) portion of the space of theoretically possible signals. To
help make these methods instinctively available, we include critical
pieces of the context from which dictionary methods emerged. These
pieces argue that:

Sparse representations work and this is supported with several examples
and the beginning of the discussion of the philosophy behind them.

The inverse problem perspective is the right perspective for understand-
ing the implicit and explicit assumptions that effect what informa-
tion we see and what we information we ignore. (An inverse problem
uses measurements to infer the true state of the the process of thing
we were measured. Why this is often hard: the measurement pro-
cess is often complicated (hard to invert!) and lossy/noisy – you
apparently lose information when you measure. Example: from a
few, noisy, low resolution images of an evolving scene, find the true
three dimensional, dynamic reality those images were measuring.)

Understanding the relation between metrics and prior assumptions is crucial
if the nuances of the information extraction process are to be under-
stood. In turn, these nuances are key to any sort of optimality that
the analyst hopes to achieve when finding needles in haystacks.

Our GitLab Repository

To assist the more adventurous analysts in barehanded explorations,
we provide code (and papers) in a GitLab repository (Link).

https://gitlab.com/iFinMath/cycles-discovery

